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ABSTRACI

Fast path-planning algorithms are needed for autonomous vehicles and tai..-. ,,erain-analysis

tools. We explore a new approach using "optimal-path maps", that give the best path., - -,1point

from any given start point in cross-country two-dimensional terrain for a moving agent of m,

gible size. Such maps allow fast point-location algorithms at run-time to categorize the start point

according to the behavior of the optimal path to the goal, from which the path can be reconstructed.

We study terrain modelled by piecewise-linear roads and rivers, polygonal obstacles, and by con-

vex polygonal homogeneous-cost areas ("weighted regions"). We explore two methods for con-

structing optimal-path maps, one based on wavefront-propagation point-to-point path planning, and

a more exact divide-and-conquer aorithm that reasons about how optimal paths must behave. In

the exact approach, boundaries caused by terrain feature:; are characterized using analytical

geometry and optimal-path principles, and partial optimal-path maps are merged into complete ones.
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I. INTRODUCTION

A. OVERVIEW OF PATH PLANNING

Motion planning is an important problem in robotics, computational geometry, snd many other applica-

tions. A central part of motion planning, known as path or route planning, is the process of determining the

paih to be taken either by an agent's appendages or by the entire agent. The research reported herein is con-

cerned with the latter of these two path-planning processes. Specificall), it is concerned with plarming paths

over long distances in cross-country terrain. Thus we are not concerned with small-scale motion, where robot

appendages are moved among objects on a work-bench or robot legs are placed on the ground, for example,

nor with medium-scale motion, where the agent's path must be planned so as to provide adequate clearance

for itself, but with large-scale motion, where the size of the agent is negligible compared with the surround-

ing terrain.

Path planning will not typically be the only, or even the most important task which competes for comput-

ing resources. For example, the purpose of an autonomous vehicle is to go somewhere independently and ac-

complish a mission, a task which will require a large number of intermediate tasks which will each take

computing time and space. Therefom it is important to find path-planning algorithms which use as few resour-

ces as possible. This means increasing rn-time speed and at the same time decreasing storage requirements.

These are usually conflicting goals, but it is often possible to increase run-time performance or reduce storage

at the expense of preprocessing time in a pre-mission phase when resources are notin demand.

The problem of finding an optimal (least.cost)pails between two points for z negligibly small agent over

fixed, two-dimensional terrain with known cos. characteristics can be attacked by several methods. When the

agent is constrained to travelling on a finite number of known paths, the problem can be solved by network

search algorithms, a subject of thorough study in operations research. When the agent is not constrained to

travelling on specified paths, the area is called free space. Path planning in two-dimensional free space is

beginning to be studied in depth by researchers in such fields as artificial intelligence, robot;cs, and computa-

tional geometry. Most methods require homogeneous-cost background terrain interspersed with impassable

obstacles, as for example for the Visibility-Graph algorithms [Ref. 1]. However, handling additional types of



terrain features (for example, linear low-cost features, e.g., roads, linear fixed-crossing-cost features, e.g.,

rivers, [Ref. 2] and polygonal regions of homogeneous-cost terrain, e.g., forests, swamps, or fields, [Ref. 3])

will improve th, ability to model terrain realistically.

A promising approach to two-dimensional path-planning in fee space which we develop in this research,

called the optimal-path-map approach, provides greatly improved nmi-time speed at the expense ofpreprocess-

ing time and storage. This approach partitior the plane during preprocessing into regions with similarly-be-

haved optimal paths and then locates a start point in this partition at run time. Figure I shows an example

optimal-path map with boundaries separating the regions of similarly-behaved optimal paths. Additionally, a

set of vectors is superimposed on the optimal-path map in Figure I showing initial directions of selected op-

timal paths. WVe develop the theoretical basis for such a partitioning for a more general set of terrain features

uan has previously been used in optimal-path-map construction, making this approach more practical for real-

woild cross-country path planning. Then once the optimal-path map is constructed, our approach can appeal

to algorithms with worst-case time complexity of O(log n) to locate astartpoin in a planarpartition (see Chap-

ter II, Section B), where .t is the number of terrain-feature vertices. Once the start point is located in the par-

tition, the behavior of the optimal path is identified and the path can be reconstructed. This response time is

very attractive, especially for real-time systems like missiles or for systems with many compeing computing

requirements like autonomous vehicles.

The principal results of our research are threefold. First, we adapted the wavefront propagation algorithm

to find boundaries between regions ofstart points whose optimal paths am similarly behaved, and implemented

three versions of the new algorithm. Second, we characterized boundaries mathematically by means of analytic

geometry. Third, we proposed an algorithn to construct the planar partition using these mathematical results

for convex polygonal and piecewise-linear terrain, as an alternative to our wavefront propagation algorithm.

B. ASSUMPTIONS

We assume that the terrain is known, and can be modelled by combinations of the five primitive types of

terrain features presented below. We assume that terrain-feature edges can be modelled piecewise-linearly,

that terrain is isotropic (traversal cost is independent of direction of travel), and that no two polygonal regions

have common veriaces. Althoigh the mobile agent is constrained to travel in the two-dimensional plane of the

2
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input map, assigned costs of travel may reflect that the actual surface being traversed varies in height. (See

also Chapter II, Sections C and D.)

Following Mitchell [Ref. 4], we make the assumption called the general-position asswnption (Appendix

A, Assumption 1-3), that no terrain-feature vertex lies on a homogeneous.behavior boundary generated by

another terrain feature, i.e., that there is not an accidental alignment of boundaries with terrabi-f eature ver-

tices. This restriction does not change the following results significantly, but allows the discussion to proceed

without convoluted, but unimportant, conventions. In an actual implementation of the algorithms proposed

below, this assumption must be retracted.

The following five terrain-feature types are allowed:

* Background. Areas of the map which do not contain other terrain features have a fixed cost

per distance travelled.

" Obstacles. An obstacle is a convex polygon enclosing impassable terrain.

" Rivers. A river segment is a line segment whose cost to the agent to cross anywhere along its
length is a fixed constant, not dependent on the angle of crossing.

" Roads. A road segmieit is a line segment with a fixed cost per distance for length-wise traver-
sal. Thus a road segment is infinitesimally thin, can be crossed at no cost to the agent, and can
be entered or left anywhere along its length.

" Convex Homogeneous-Cost Areas. A convex homogeneous-cost area (tlCA) is a convex
polygon with a constant positive cost per distance travelled. An HCA may have cost per dis-
tance greater or less than the background terrain, but not zero. The agent may enter or leave the
area at any point on its circumference at no additional cost.

These terrain-feature types could all be modelled by HCAs. However, allowing obstacle, river, and road

terrain feawu"es enhances efficiency by allowing us to take advantage of their simplicity. Specifically, it is an

advantage to avoid, where possible, the complicated analysis of paths through homogeneous-cost regions (see

Chpter I, Section E2b(3)).

How re.,.i tic are the above assumptions? There are at least three issues. Fast. is it reasonable to expect

tt we know the characteristics of the terrain; second, car terrain be adequately modelled by piecewise linear

curves; and third, will the use of convex non-adjacent polygons be sufficient? As discussed in Chapter 11, Sec-

tion D4, the Defense Mapping Agency and ot,. U.S. Government agencies currently have the ability to

produce maps which characterize terrain according to the speed at which a given vehicle type can traverse it.

(Of course, cost in terms of time is the reciprocal of speed.) The program used to produce these maps, called

4



ArmyMobiliy Model (AMM), takes as input a digitized combination of soil conditions, vegetation, man-madA

features, and elevation which is available at present only for selected areas of the earth, but there is an ongo-

ing effort to expand this database. As this database is expanded, AMM will be able to produce cost mops of

more of the world's surface, so that a path-planning system which uses AMM cost maps as input can be ex-

pected to know the characteristics of the terrain. However, an additional consideration is that terrain may be

impermanent. In this case our assumptions will be invalidated.

The second issue is whether terrain can be adequately modelled using only piecewise linear curives. Corn-

putviional geometry relies very heavily on the use ofpiecewise linear curves to approximate reality, since there

is a fixed precision associated with any computer, and a finite amount of storage. In fact, the very concep of

continuity is a mathematical abstraction, since at some level the most smoothly continuous curves will be seen

to degenerate into discrete elements. For example, a wood-line may seem to form a continuous curve, when

in fact at the scale of individual trees it is clearly discontinuous. Since the database maintained by the Defense

Mapping Agency has a maximum resolution of 12.5 meters square, we can be assured that no epre3etation

we propose will be more accurate than this. One additional consideration is that small nuances of the terrain

will normally have much less effect on optimal paths than will large features. Of course, it is always desirable

from the viewpoint of efficiency to use as few line segments as possible to approximate a curve in order to

reduce the number of terrain-feature vertices in the input map.

The third question is much more of a problem. The use of convex polygons will clearly nct approximate

all types of terrain if we require that no two polygons have common veklices. The output of Army Mobility

Model for example, allows non-convex polygons. This research uses the non-adjacent-convex-polygon as-

sumption in order to attack a problem of somewhat smaller scope first, with the intention of expanding the

scope in the future to incorporate non-convex regions. The next step will be to extend the analysis of Chapter

V to include the case of adjacent convex polygons.

C. THE OPTIMAL-PATH-MAP APPROACH TO PATH-PLANNING

The optimal-path-map approach to path planning groups paths according to their general behavior with

respect to a goal point. A surjective function is defined to map optimal paths to generalizing path descriptions

so that paths with similar behavior are mapped to the same description. The usual definition of "similar be.



havior" is crossing the same sequence of terrain-feature vertices and edges. Boundaries are constructed to par-

tition the plane of the map into regions whose start points have similar behavior. Then to determine an optimal

path, a given start point is locatee vithin the partition. The path description of the region associated with the-

start point applies to the optimal path from the start point, so this path description is specialized for the given

start point to give an optimal path. The focus of our research is the construction of the planar partition.

How can paths be represented so they can be grouped according to their behavior? Theorem 1-2 states that

optimal paths among piecewise-linear and polygonal terrain are always piecewise linear, changing direction

only at terrain-feature vertices and edges. This fact suggests two possible ways to represent optimal paths. The

more natural way to represent a single piecewise-linear path would be by listing the coordinates of its turn

points. Alternately, we could list the t'.aain-feature vertices and edges at which a path turns. The first repre-

sentation has the difficulty Itt there is no immediate way to tell from the list whether or not turn points from

tw different paths j:4 on the same terrain-feature edge. The second representation allows paths to be grouped

more ea~sily according to whether they cross the same terrain-feature edges and vertices, but has the difficul-

ty tha, it is not clear by looking at the list what the coordinates of a turn point are on a terrain-feature edge.

This conflict suggests a composite representation wherein a list contains terrain-feature vertices and edges,

and for each edge, may also contains as supplemental infonmation the exact coordinates at which the path cros-

ses the edge. This is the representation we adopt, calling spuch a list a path list.

The path list can be used ., represent a specific optimal path as well as a generalized description of an

optimal path. If a path fist has a terrain-feature vertex as its first element, the path is completely determined

because it will to from the start point directly to the vertex, from where a unique path goes to the goal (Corol-

lary 1-3.1, Appendix A). If a path list has an edge as its first element and no supplemental information is in-

cluded with that edge, the path list represents all optimal paths whose first turn point lies on that edge. If

however, cooninates of the crossing point are included with the edge, the path is completely determined. When

listing an edge in a path list, it is also important to distinguish between edges crossed from different directions,

because for example, paths may enter the same portion of a road from both sides; we want to distinguish be-

tween the two sets of paths which come from either side of the road. For consistency in our discussions, we

adopt the convention that for a start point with no feasible paths (for example, a start point inside an impass-

able obstacle), the optimal-path list is a null symbol concatenated with the goal point.

6



Now the path-generalizing function can be defined more fully for the usual definition of similar behavior

of paths. For the set 0 of all optimal paths and the set (VUE)* of all combinations of terrain-feature vertices

and edges, the function f: 0 -(VtE)* maps an optimal path to its path list.

Define a homogeneous-behavior region with respect to a goal G as the set of all start points whose op-

timal paths are mapped by the path-generalizing function to the same set. Thus, start points whose optimal

paths have the same path lists are considered to be in the same homogeneous-behavior region for the usual

definition of the path-generalizing function. Define the root of a homogeneous-behavior region as the first ele-

ment of the path list associated with the region. Since a root may represent a terrain-feature edge which can

be crossed at any point along its length, the supplemental information cannot be retained by the path list as-

sociated with the root. Define a homogeneous-behavior boundary as the locus of points lying in two

homogeneous-behavior regions. On a honogeneous-behavior boundary (except for obstacle edges), at least

two optimal paths exist for a given point.

The fundamental principle upon which spatial reasoning about optimal paths is based is the principle of

optimality. In its general sense, the principle of optimality states that if it applies to a system, future optimal

policy in the system depends only on its current state and not on its past history. Teorem I-1 (Appendix A)

states that the principle of optimality applies to the path-planning domain. In other words, it states that the

portion of an optimal path from any point on the path to the goal is also an optimal path.

We extend the general-position assumption discussed above to terrain feature edges by adopting the con-

vention that any terrain featuve edge intersected by a homogeneous-behavior boundary is to be treated as two

distinct edges, one on each side of the boundary. The immediate result or this assumption, the principle of op-

timality, and Theorem 1-2, is the uniqueness of optimal paths from any terrain feature vertex or across the in-

terior of any edge. (Corollary 1-3.1, Appendix A.) It follows from the definitions of homogeneous-behavior

regions, roots, and boundaries, the general-position assumption, and Theorem 1-2 that there is a unique root

associated with cacii homogeneous-behavior region (Corollary 1-3.2). It also follows that homogeneous-be-

havior region. are "star-shaped" with respect to the region root (Corollary 1-3.3).

An optunal-path tree of a set of terrain features with respect to a goal point is the index tree for all pos-

sible path lists. In other words, it is the tree whose root represents the goal and whose internal nodes are ter-

rain-feature vertices and edges, such that for each node, the optimal paths from that node's vertex or edge go

7



first to the vertex or edge represented by the node's parent. Therefore, the path list for the vertex or edge as-

sociated with a node is found by following the parent pointer of the node back to the root of the tree, which is

the goal. Each node of the tree corresponds to a unique homogeneous-behavior-region root, which corresponds

to a unique homogeneous-behavior region. Thus, locating a start point in a region of the planar partition is

equivalent to specifying which node of the tree identifies the behavior of the optimal path from that start point.

Figure 2 shows an example planar partition with its corresponding optimal-path tree.

An initial version of the optimal-path tree can be constructed by using a point-to-point path planner to

compute the optimal path from each terrain-feature vertex on the input map and then inserting the turn points

of each resulting optimal path into a tree. The method presented in Chapters V and VI uses the optimal-path

tree to construct theplanarpartition, andrevisesitby insetting nodes whichcorrespond to terrain-feature edges.

However, the method presented in Chapter III constructs the optimal-path tree at the same time as it constructs

the planar partition.

An optimalpath map or OPMis a partition of the plane into homogeneous-behavior regions with respect

to a goal, along with its associated optimal-path tree. There is a finite optimal-path tree associated with every

two-dimensional map consisting of terrain as defined above (Theorem 1-4, Appendix A). The specification of

this optimal-path tree is a necessary part of the optimal-path map, and we will assume that the term optimal-

path map implies both the representation of the planar partition and ef the ,'timal-path tree, with some means

of linking each node with its corresponding homogeneous-kbhavior region in the partition. A typical repre-

sentation of the planar partition is the doubly-connected-edge-list discussed in Chapter II, Section B.

Several partitioning algorithms for terrain containing only obstacles (the binary case) have been proposed

in an attempt to present faster solutions to the point-to-point path-planning problem (see Chapter2), and several

algorithms even solve a portion of the optimal-path-map problem with respect to weighted regions by creat-

ing the optimal-path tree in pursuit of single-path solutions. In this research, we investigate the problem of

creating an optimal-path map for weighted-region terrain, focusing on a solution to the optimal-path-map

problem as an end in itself. We choose to investigate this approach because it offers the most opportunity for

enhancement of run-time performance at the expense of preprocessing time because of the promise of O(log

n) run-lime complexity to identify an optimal path for a map of n terrain-feature vertices.
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D. SUMMARY OF RESEARCH REPORTED HEREIN

In Chapter 11, we explain and classify the path-planning algorithms relevant to this research, specifically

those dealing with negligible-sized agents in a fixed, known environment where ternmn is two-dimensional,

free space.

One method of obtaining sub-optimal solutions to the optimal-path-map problem uses a version of the

standard wavefront propagation algorithm. Such an algorithm is presented in Chapter III, and the extensions

necessary to create optimal-path maps are developed. Chapter IV is an analysis of the algorithn in te pre-

vious chapter. Two primary sources of error are examined, and known results of inherent inaccuracy in

wavefront propagation are extended to the resulting OPMs. The theoretical time and space complexity of the

above algorithm is presented, along with empirical results concerning execution times for three alternative

heuristics used with the algorithm.

A second approach to solving the two-dimensional optimal-path-map problem is to reason about how op-

timal paths behave in the presence of various terrain features. This reasoning leads to analytical characteriza-

tion of the boundaries between hornogeneous-behaviorregions ofsimilarly-behaved optimal paths as functions

of terrain feature characteristics. It turns out that all boundaries generated by the roads, rivers, and obstacles

are segments of conic sections. Other boundaries are more mathematically complex, and in many cases can-

not be described in closed-form expressions. First in Chapter V, a set of definitions is presented, followed by

development of the characterizations of boundaries generated by "primitive" terain feature types, i.e., single

polygons and single line-segments. Then the characterization of more complex combinations of primitive ter-

rain features is discussed, and decomposability is defined for construction of optimal-path maps.

in Chapter Vi, algorithms use the results of Chapter V to generate OPMs more accurate than those of

Chapter BI for isolated occurrences of each type of primitive terrain feature. Then an algorithm based on the

divide-and-conquer paradigm is presented to generate OPMs for some "decomposable" maps with multiple

terrain features. In Chapter VII the divide-and-onquer exact-OPM algorithm is analyzed, first in terms of

sources of error, and then with respect to theoretical time and space complexity. Then the empirical perfor-

mance of an implemcntation is discussed. Chapter VIii summarizes the results of the research.
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U. L SLEVANT RESEARCH

A. APPLICABLE CONCEPTS FROM ARTIFICIAL INTELLIGENCE

1. Search Methods

One of the central problem-solving techniques inArtificial Intelligence is the use of search [Ref. 5],

[Ref. 6]. A search problem is couched in terms of a current state and a goal state, operators are defined which

transform the system from one state to another, and a search is conducted for a sequence of operators which

will transform the current state to a goal state. Conceptually, a search space is a directed graph whose nodes

represent all possible states, and whose edges represent operators. Solving the problem means applying graph-

search algorithms in the search space to find a path from a start node to a goal node. The search space may be

a very large, even an infinite graph which is not represented explicitly, but as the algorithm proceeds, it creates

a sub-graph, called a search graph (or search tree), whose nodes are the states actually reached during the

search. The underlying aim is to find ways to make the search graph as small as possible while still i. sluding

the goal state, i.e., to look at as few states of the search space as possible on the way to finding the goal. There

are two ways of limiting the size of the search graph. One way is to guide the search by means of heuristics,

and the other is to represent the problem in such a way as to reduce the search space.

When no domain-specific information is used to guide decisions aboutwhich node of the search graph

to process next, the process is called blind search. Although few problems have a search space small enough

to allow practical use of blind search, the techniques used provide the foundation for heuristic search, where

information is used to guide the search. All the search techniques discussed below can be said to conform to

a general model where the search is initialized by placing an initial node on an agenda, and proceeds by ex-

panding the first node on the agenda, putting the node's children on the agenda in a manner which varieto from

technique to technique.

Branch-and-bound search, also known as Dijkstra's algorithm, is a generalization of breadth-first

search which uses heuristic information. The distance of a node from the start is not measured by the number

of edges from the node to the root as in breadth-first search, but by the total cost of the edges. Thus, each edge

has an associated cost, and at each iteration, after a tiode has been expanded and its children placed in the agen-
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da, the agenda is sorted by cost to keep lower-cost nodes first. Since physical distance is the normal metric in

the path-planning domain, this is a natural search technique to use. This technique guarantees that the first path

found to the goal is the lowest-cost solution.

Another search strategy which is widely used in path planning is called A* search. It sorts its agen-

da according to the sum of the cost function and evaluation function at each node. If the evaluation function

value from any point to the goal is a lower bound on the actual cost from the point to the goal, it is guaranteed

that the first time tn optimal path to the goal is selected from the agenda it will be -ecognized as optimal.

2. Domain.Specific Heuristics as Guides to Search

General solutions to problems tackled by Artificial Irtelligence researchers axe usually so difficult

that great advantages are to be gained by finding rules-of-thumb to focus the search in the right direction.

Heuristic search strategies use cost and/or evaluation functions to guide the search. Rich [Ref. 7] states that

the field of artificial intelligence is largely the study of heuristic search forsolving difficult problems, and The

Handbook ofArtificial Intelligence calls heuristic search "one of the key contributions ofArtificialInteligence

to efficient problem-solving" [Ref. 5]. In the path-planning domain, there is a natural heuristic which is often

used to guide search for an optimal-cost path, which is that for a path from the start point to an intermediate

point, if the intermediate point is closer in straight-line distance to the goal than some other imermediate point

from another path (irrespective of terrain yet to be negotiated),the first path is preferred over the second for

further exploration.

3. Problem Representation

It is often the case in problems studied in artificial intelligence research that a problem which seems

very difficult when represented in one way will suggest a natural solution when represented in a different way.

In other words, finding a good problem representation is often the key to efficient solution of the problem, as

well as to clear understanding of the problem on the part of researchers [Ref. 5]. Path-planning agurthms, for

example, are essentially ways of transforming an infinite search space to a finite one, and then searching the

transformed search space using one of several heuristic-aided search algorithms discussed above.

12



B. APPLICABLE CONCEPTS FROM COMPUTATIONAL GEOMETRY

1. Definitions for Optimal-Path Maps

a. Path Ust

When optimal paths are guaranteed to consist of line segments between a finite number of turn

points, which Theorem 1-2 shows is true of the terrain considered in this research, they n be represented by

listing these turn points. It is also shown in Theorem 1-2 that these turn points occur only at terrain-feature ver-

tices and edges. This suggests two possible ways to list the turn points. The most direct way is to list the coor-

dinates of the points. This allows direct reconstruction of the path from its lisL However, this representation

makes it somewhat more difficult to compare two lists to determine if the paths they represent cross the same

edges. It might be better to list explicitly the vertices and edges that a path crosses. This representation has the

drawback, however, that some computation would be necessary to determine for each edge crossing exactly

where the crossing occurred. Since our research is primarily concerned with grouping palts together accord-

ing to their general behavior, we adopt the second representation, calling such a list a path list. An example

path list from start point S to goal point G in Figure 3 is [E,A,GI, while firon point R there are three possible

goodpath lists of [F,C,G], [H,G], and [PQ,G]. For consistency in later discussions, we say that for a startpoint

with no feasible paths (for example a start point in the center of an impassable obstacle), the path list consists

of a special null symbol concatenated with the goal point.

b. Path.Generalizing Function

The concept upon which the optimal-path-map approach to path planing is based is that paths

can be grouped according to their behavior. Apath-generalizingfunction f:O--B is defined from the set of

optimal paths to the set of behaviors of optimal paths, which maps an optimal path to a description of its be-

havior. Since many paths may share the same behavior descriptions, fis a suriective function. The usual way

to define the behavior of a path is by listing the vertices and edges it crosses. In that case B = (VUE)*, the

set of all combinations of terrain-feature vertices and edges. Since path lists are defined in terms of vertices

and edges, the usual definition of f is that it maps an optimal path to its path list.

A path-generalizing relation R which relates two points if the path-generalizing function maps

their optimal paths to identical path lists is an equivalence relation because the identity relation is in general
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an equivalence relation. Since the domain of f is the set of all points on the input map, f induces a partition on

the plane of the input map through this equivalence relation.

c. Homogeneous-Behavior Region

Define a homogeneous-beleaviorregion with respect to a goal point and a path-generalizing func-

tion as the set of start points whose optimal paths to that goal point are mapped by the path-generalizing func-

tion to the same path behavior. In our work, this is equivalent to saying that it is the set of start points whose

optimal paths have the same path lists. Each homogeneous-behavior region corresponds to an equivalence

class of the path-generalizing relation R, and so is a subdivision of the partition induced by R on the plane of

the input map. In Figure 3, for example, point S is in the homogeneous-behavior region enclosed by segments

El, K, KL, and LE.

An optimalpath map (OPM) is defined as the partition of the plane of the input map into

homogeneous-behavior regions, along with their associated path lists. For the conceptual representation of an

optimal-path map shown in the top half of Figure 3, the two data structures in the bottom half of the figure

fully specify the OPM.

d. Homogeneous-Behavior-Region Root

Because of the definition of homogeneous-behavior regions, each unique path list defines a

homogeneous-behavior region. Thus given a path list, the associated region is defined. By the general-posi-

tion assumption (Assumption 1-3, Appendix A), there will be no accidental z.ignment of boundaries from

another region such that there is more than one path list from a region. The first element of the path list as-

sociated with a region is defined as the homogeneous-behavior-region root. For example, in Figure 3 the path

list of start point S with respect to goal point G is [E,A,G], and point E is the region root of the region of which

S is a member.

2. Data Structures

Several data structures with wide utility in computational geometry are useful in the optimal-path-

map domain. Since an optimal-path map consists of the set of path lists from homogeneous-behavior-region

roots and a planar partition, these two items must be represented.
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a. The Optimal-Path Tree

The optimal-path tree is a way of representing a set of path lists. It is a direct extension of the

shortest-path tree concept [Ref. 8]. An optimal-path tree (OPT) is a tree whose root (not the sane as a

homogeneous-behavior-region root) is the specified goal point, whose nodes are terain-feature vertices and

eAges, and for which an optimal path from the terrain-feature vertex or edge represented by any node in the

tree goes directly to the vertex or edge represented by that node's parent. Each node of the tree corresponds

to a homogeneous-behavior region, and every homogeneous-behavior region is represented by a node. (see

Theorem 1-4, Appendix A). Thus by labeling regions and OPT nodes the same, or by establishing pointers

from regions to nodes of the OPT, a linkage is established which allows retrieval of the appropriate OPT node

given a region. Then the path list associated with the region can be reconstructed by tracing upwards through

the tree to the tree's root. Note, however, that furner computation usually is necessary to reconstruct the op-

timal path from the path list by finding optimal edge crossings. Another important characteristic of the op-

timal-path tree is that it reduces the redundancy of storage of optimal patihs associated with terrain-feature

vertices and edges by integrating them all into one structure. In Figum 3, the optimal-path tree is shown for

the given terrain map.

b. The Doubly-Connected Edge List (DCEL)

A planarpartition could be representedin edge-list form in which, foreach vertex ofapiecewise-

linear approximation of the boundary between subdivisions of the partition an ordered list of its incident edges

is given. Although this is a natural representation, some of the information implicitly present could be explicit-

ly listed, enhancing efficiency at the expense of preprocessing time and storage. A doubly-connected edge list

is such a data structure that has proven to be quite useful in representing a planar partition. Represent each

edge as a node in the DCEL, and label each edge, vertex, and rgion. Note that the terms edge and vertex as

used in connection with the DCEL refer to piecewise-linear homogeneous-behavior-region boundary edges

and vertices, not to terrain-feature edges and vertices. With each edge-node, associate a six-tuple of data ele-

ments (VI,V2,RI,R2,PI,P2). The Vi are the two vertices of the edge. The assignment of vertices to the two

fields Vj and V2 is arbitrary, but once assigned is fixed. Once the vertices are assigned, the edge becomes

directed from Vi to V2, Ri is the region (or face in the terminology of computational geometry) to the left of

the edge, and R2 is the iegion to the right. Pi is a pointer to the edge-node which is adjacent to edge VIV2 ii
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a counterclockwise rotation about Vi, and similarly for P2 with respect to V2. A partial listing of the DCEL

for the optimal-path map of Figure 3 is also shown. [Ref. 8]

For a DCEL representing a partition with n vertices, a single pa,-' i time O(n) can create arrays of

headers of vertex and region linked lists, so that straigntforward algorithms can retrieve the sequence of edges

incident on a vertex or enclosing a region, in time proportional to the number of edges involved. A graph in

edge-list form can be transformed to a DCEL in time 0(n). [Ref. 8]

An extension of the DCEL allows curved edges, as well as piecewise-linear ones, to be repneseteui

Additional fields for each edge-node can be added to the DCEL to represent the algebraic form of the curve

and to represent additional parameters necessary to specify the curve analytically. For example, if a curve rep-

resented a segment of a hyperbola, the entry in the first additional field would note that, and the second addi-

tional field would contain the two parameters of the equation of a hyperbola. Two points on the hyperbola, the

endpoints of the segment, are listed in the DCEL, so the hyperbola segment is fully specified.

3. The Plane Sweep Paradigm

Many algorithms in computational geometry follow theplanesweep paradigm. The idea is to process

a geometrical structure in the plane in an ordered fashion, normall) ':v sweeping an imaginary vertical line

from left to right from event point to event point, where an event point is a point in the plane at which some

action may need to be taken. Two data structures are useful in conducting a plane sweep, an event-point

schedule and a sweep-line status. At artb poxai al.ag the sweep axis, thw, geometrical structure is characterized

by a status which is the relaic4I of the vetial A ine to the geometrical s',muic.-re, For example, the status may

be an ordered list of line segments of the structure which intersect the .veep line. This status will change at a

finite number of points along the sweep axis for a finitely-dscribabe structur.. These changes in status am

the places at which the problem must be processed or analyzed. 1hruse points along the sweep axis ame main-

tained in the event-point schedule. The event-point schedule is often some form of a queuc. [Ref. 8]

4. Point-Location in the Cartesian Plane

Linked to any algorithm that pactitions the Cartesian plane in order to represent properties of points

in each region is the requirement to retrieve those properties when queried about any point in the plane specified

by its coordinates. Algorithms that build optimal-path maps are partitioning the plane into regions such that

each region contains those stir. points with similarly .behaved optimal paths to a given goal-point, It is mrces-
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sary to determine in which region the point lies. If the boundaries between regions are piec2wise-linear cur-

ves, there are several algorithms from computational geometry which canbe used to locate apoint in the planar

partition.

The slab method of point location in a planar partition draws a horizontal line through each vertex of

the partition, and then sorts the regions (or slabs) lying between horizontal lines from top to bottom during

preprocessing. This allows location of the point within a slab in O(log n) time by use of bisection search based

on the y-coordinate of the point, where n is the number of vertices in the partition. Line segments which com-

prise the boundaries of the partition cross through each slab. Within a slab they can be ordered from left to

right because at no point in the interior of a slab do two line segments intersect, -ince the slabs were defined

by drawing horizontal lines through all the intersection points of the partition. Then bisection search can be

used to locate the point horizontally between line segments within the slab in 0(log n) time, for a total loca-

tion time of O(log n + log n) = O(log n). Two disadvantages to this method are the requirement for preprocess-

ing time and storage space. Preparata and Shamos show how to reduce the basic O(n2 log n) preprocessing

time to O(n2) using a plane sweep approach, but the algorithm requires at worst O(n2) space. [Ref 8]

A ;ecmcl point-loc-ption method is the chain method. Instead of dividing the planar graph horizon-

tally with slabs, it finds vertical chains, orconnected liae segments, ofedges, which are monotone with respect

to the y-axis, i.e., such that no two points on the chain have the same y-coordinate. It then constructs two bi-

nary search trees, the first having those chains as nodes and the second having segments of chains as nodes.

The two trees can be traversed in O(Iog n) time to locate a point. A DCEL can be preprocessed in O(n log n)

time into the two binary search trees, which take at worst O(n) space. [Ref. 81

Another point-location method is th! triangulation refinement method. A set of connected line seg-

ments is said to be triangulated if each vertex is connected by a line segment with at least two other vertices,

i.e., the line segments all form triangles. The planar partition is triangulated in O(n log n) time by standard

methods from computational geometry, and a hierarchy of triangulations is constructed upon which to search.

This method leads to O(log n) query time, O(n log n) preprocessing time, and O(n) storage. [Ref. 8]

An extension of the chain method, the bridged chain method, uses an elegant method that permits

search in O(constant) time for subsequent searches, after a higher cost for a first search. It happens that the

chain method meets tie conditions for application of the bridging teclique, and so bridging is used to ac-
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cumulate information during the search process. This technique brings the chain method to efficiency com-

parable with the triangulation refinement method. [Ref. 8]

Although the above two methods achieve the theoretically optimum worst-case bounds, there may

be sub-optimal methods which afford better practical perfonnance. Specifically, the trapezoidmethod, which

could be considered an extension of the slab method, gives an (log n) query which always succeeds in fewer

than 4-log n']+ 3 tests, and uses O(n log n) storage ai preprocessing time. Actually, average-case storage

may be O(n). This method has the additional property that it may be extended to curvilinear edges, so it may

be especially useful in our application since instead of approximating curves piecewise-linearly, they may be

represented exactly by their analytical form. [Ref. 8]

A problem with the slab method was the O(n2) worst-case space complexity, where n is the number

of vertices of the graph representing the planar partition. iis problem was due to the possibility that edges

could span most of the horizontal slabs, each such edge needing to be segmented into O(n) fragments. In the

trapezoid method, it can be shown that no more than 2 log n fragments will ever be needed for any edge, so

no more than O(n log n) space is required. The trapezoid method defines a trapezoid as having two horizon-

tal sides and two other sides which may be unbounded, or else if they exist are edges of the graph not inter-

rupted by vertices. The basic operation of tie algorithm is to split a trapezoid into subordinate trapezoids. The

progress of the splitting algorithm is paralleled by the building of a balanced binary search tree which repre-

sents a hierarchy of subordinate trapezoids. This tree can then be searched to locate a point in a trapezoid.

Figure 4 (adapted from Preparata and Shamos [Ref. 8]) shows an example trapezoid with its corresponding

search tree.

The splitting operation for the trapezoid method proceeds by finding the median y-coordinate among

the vertices contained in the current trapezoid T and dividing T into two "slices" Ti and T2 by drawing a

horizontal line through the median vertex. Then those edges which intersect the top or bottom horizontal side

of T are scanned from left to right, and the first edge which alse intersects the newly drawn horizontal line,

i.e., which spans TI or T2, defines a new trapezoid T3. The scan continues until all edges which span Tj orT2

are found, with a new trapezoid being generated for each spanning edge. Note that edge el defines the first

new trapezoid T3 in Figure 4 because it spans the top and median lines of T. T3 will not need to be further split

because there are no vertices contained in it. Spaiming-edge e2 is found next, and creates T6. Finally e is
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found, creating T4. No other spanning edges are found, so T5 and T7 are also defined. T4, Ts, T6, and T7 all

contain vertices of the graph in their interiors, so they will need to be split further in subsequent iterations of

the algorithm. Triangular nodes of the search tree represent horizontal splits at graph vertices, while circular

nodes represent the definition of new trapezoids by spanning edges. There will be n-2 triangular nodes of the

tree, one for each except the left and right extreme vertices of the graph. Edges may form the sides of more

than one trapezoid, however, in fact they may be fragmented into as many as 2 logn segments, a- stated above.

Thus the search tree may have as many as O(n log n) nodes, which is the worst-case space complexity. The

tree corresponding to the trapezoids found in Figure 4 is also shown.

The depth of the balanced search tree can be shown to be no more than 4 Flog nli. 3, so a search of

the tree will take no more than that many steps. Thus the worst-case time complexity to locate a point in the

planar partition is O(log n). Since there are O(n) edges and each edge may be segmented into O(log n) frag-

ments, the time required to process the edges is O(n log n), while both the median-finding and the tree-balanc-

ing may be done in O(n log n) time. Thus the preprocessing required is 0(n log n).

An added advantage which could be useful to our research is that the trapezoid method can be ex-

tended in some cases to finding a point among edges which are not straight-line segments. This can be done

if first, the curves can be expressed as a single-valued function of one of the coordinates, and second, if it can

be determined in constant time whether a point is on one side or the other of the curve.

5. Intersections Among Line Segments in the Cartesian Plane

A common operation of the algorithms proposed in Chapter VI is to find intersections between two

piecewise-linear curves. It is thus important to find efficient methods of doing this operation. The intersection

of two piecewise-linear curves with p and q segments respectively would take, using the naive approach which

compares each segment of one curve with each segment of the other, 0(pq) Line segment intersections, so it

is important to find better ways of doing the operation.

Preparata and Shamos present an algorithm to find all intersections among n line segments by per-

forming a plane sweep along the x-axis. At any point on the x-axis, a vertical line imposes a total order on

those line segments it intersects. This order is recorded in the sweep-line status. As the vertical Hne sweeps to

the right from intersection point to intersection point, new line segments may be added to the ordering, and

old ones deleted. bu, if any adjacent pair of line segments changes order, which is detected by a change in the
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sweep-line status, an intersection of those segments must have occurred. Thus, any line segment which is added

to the ordering is checked for intersection with the segment immediately above and below it by checking if

the relative order changes at the point along the x-axis where the first of the two segments will be deleted. This

approach can detect k intersections amongnline segments where n isp+q in time 0((n+k) log n). In our domain

however, any two homogeneous-behavior-region boundaries will intetrect in at most one point, because-when

any two boundaries intersect, a third boundary will begin and the other two will end. Therefore we could use

a simplification of the above algorithm which will operate in O(n log n) time. [Ref. 8]

Intersection calculation for piecewise-linear curves with monotonic curvature can exploit these

properties. Several algorithms of uncertain worst-case complexity seem to provide good empirical results. One

in particular [Ref. 9] proceeds by constructing, in O(p) time, a bounding box for the first piecewise linear

curve, and then checking, in O(q) time, which portion of the second curve, if any, intersects he bounding box.

The intersecting portion of the second curve usually contains only a small fraction, call it ki, of the whole

curve, although it is at this point that the analysis becomes imprecise because ki does not depend on p or q,

but on the curvature and relative positions of the two curves. In any case, the next step is to reverse the roles

of the two curves and create another bounding box about the kiq line segments of the second curve, in 0(klq)

time. The first curve is intersected with the new bounding box in O(p) time, finding k2p segments which

traverse the new box. The algorithm proceeds ecurively as above, terminating when one of the bounding

boxes contains only one line segment. At this point, the next check of the other curve will yield the exact in-

tersection point. A rough approximation of the time complexity of this .aoihm, if it is assumed forsimplicity

that at each stage the size of the curve is reduced by the same fraction k, is T = ((l+k)q + 2p)/(1-k) + 1. Thus

this algorithm has, assuming 0<k<l, time complexity O(q+2p) = O(q+p) = O(n). This algorithm will not con-

verge if at any stage the bounding box of each partial curve completely contains the other partial curve. But a

simple check during each iteration to ensure that the sizes of the two curves are in fact decreasing will allow

the method to proceed if it is converging. If it fails this test, a full 0(pq) test of the two curves can be used in-

stead.

6. Voronoi Diagrams

A technique in computational geometry that has been of use in some algorithms pertaining to op-

tiial-path maps is Voronoi diagram construction [Ref. 8]. A Voronoi diagram Vor(S) with respect to a set of
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points S in a plane is the partition of the plane such that each region contains the points with the same nearest

neighbor in S. Figure 5 shows a typical Voronoi diagram. One method for constructing shortest-path maps

(i.e., an optimal-path map for binary terrain), uses an extension of Voronoi-diagram methodology to plot ap-

proximations of the boundaries between homogeneous-behavior regions [Ref. 4]. It reduces the problem of

constructing the planar partition to that of finding a Voronoi diagram for the vertices of an obstacle, where the

costs of optimal paths from each vertex is known. Instead of bisectors between two vertices which are straight

lines exactly half-way between them as described below, this method constructs bisectors which are either

lines or hyperbola branches, depending on the nature of the paths from the two vertices. Then the Voronoi

diagrams of single obstacles are merged to form the complete OPM.

Some observations about Voronoi diagranms lead to an initial construction method. Between two

points PI and P2 in the plane, the set of points closer to PI than to P2 are the points in a half-plane containing

Pi defined by the perpendicular bisector of the line segment PIP2. Among a set S of n points in the plane, the

set of points closer to a point Pi than to any other point in S is the intersection of n-i half-planes each contain-

ing Pi defined by the perpendicular bisectors of the line segments PjPj. From this observation, a brute-force

method of constructing a Voronoi diagram would be simply to construct each of the n polygons about each

point in S. Since n half-planes can be intersected with each other in O(n log n) time by a divide-and-conquer

approach, this approach takes time O(n 2 log n). [Ref. 8]

A more efficient approach for constructing Voronoi diagrams which also uses the divide-and-con-

quer paradigm can be summarized as follows. First, partition S into two sets Si and S2 of roughly equal size

according to whether the x-coordinate of each point is less than or greater than the median x-coordinate of

points in S. Then, construct Vor(Sj) and Vor(S2) recursively, and finally, merge Vor(Sj) and Vor(S2) to ob-

tain Vor(S). Partitioning S takes 0(n) time for a set S of size n using a standard median-finding algorithm and

the merging step takes O(n) time. If the entire algorithm can be performed in T(n) steps, the construction of

both subordinate Voronoi diagrams in step two takes approximately 2T(na2) time. So the recurrence relation

T(n) = 2T(n/2) + 0(n) describes the algorithm, which when solved gives that T(n) is O(n log n).

The merging step is tie heart of the algorithm, and is accomplished as follows. Because the map is

partitioned such that S I and S2 will lie on opposite sides of a vertical fine, it can be shown that there is a chain
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a, i.e., a sequence of connected line segments, which is monotonic with respect to the y-axis, (i.e., no two

points of the chain have the same y-coordinate) that also partitions the plane with S I and S2 on opposite sides

of 0 such that the union of the portion of Vor(S1) which is left of a and the portion of Vor(S2) which is right

of Y yields Vor(S). In fact this chain a can be constructed in linear time, so the recurrence relation stated

above holds, and the construction of a Voronoi diagram can be done in O(n log n) time. [Ref. 8]

Generalizations of Voronoi diagrams have been presented which partition the plane into sets ofpoints

closest to a set of line segments [Ref. 10], or which base their distance function on metrics other than the

Euclidean metric [Ref. 11]. Since OPMs for homogeneous-cost areas can be thought of as Voronoi diagrams

with a different metric for each homogeneous-behavior region, the latter work seems promising. Currently,

however, only several simple metrics such as Li and Lachave been considered, so more research in this area

is necessary before OPMs of the type we are considering can be constructed with this approach. Weighted

Voronoi diagrams [Ref. 12] assign a weight to each point about which regions are computed. This concept

might appear useful in constructing OPMs, but is not. Instead it applies to a problem in which a mobile agent

travels at different speeds depending on which terrain-feature vertex it just crossed.

What is needed in constructing OPMs for the binary case is a type of generalized Voronoi diagram

in which the weight is the cost-rate of the region in which an obstacle vertex lies, and an offset of the initial

weight at the vertex represents the cost of the optimal path from the vertex. This is., in essence, what the algo-

rithm of Aronov [Ref. 13] computes. This algorithm allows points in the Voronoi set to be given an initial of-

fset weight. Knowing that bisectors between such points are hyperbolas (orin the degenerate case, lines), they

can be plotted just as in the basic Voronoi diagram algorithm. The key element of the method is the proof that

a dividing chain can be constructed between two Voronoi diagrams as discussed above, which now can con-

tain hyperbola segments as well as line segments. This allows smaller generalized Voronoi diagrams to be

merged into larger ones, which is the foundation of the divide-and-conquer approach used.

C. DEFINITIONS OF RELEVANT FREE-SPACE PATH-PLANNING PROBLEMS

Tis thesis addresses problems where the mobile agent is of negligible size with respect to the surround-

ing terrain, where terrain is two-dimensional free space with fixed terrain features, where the environment is
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stable and knowledge about it is complete, and where the optimality criterion is to minimize a cost function

which is linear in path length.

A simplified version of this problem has been called by Lozano and Wesley [Ref. 1] and Brooks [Ref.

14] the FIND-PATH Problem, and by Mitchell [Ref. 15] the OBSTACLE-AVOIDANCE Problem. This

simplified problem seeks any feasible path in terrain consisting of impassable obstacles on a homogeneous-

cost background. An important extension to the FIND-PATH Problem includes the optimality criterion that

the resulting path be the shortest among all feasible paths. It is called the OBSTACLE-AVOIDANCE

SHORTEST-PATH Problem, or simply the SHORTEST-PATH Problem.

OBSTACLE-AVOIDANCE SHORTEST-PATH Problem: Given a mobile agent A of negli-
gible size with respect to the environment, an environment E consisting of impassable obst-cles at
fixed and known locations on a homogeneous-cost background, and motion objective 0 consisting
of the translation of A to a specified goal point in the environment, find a continuous path 19 forA
amidst E that achieves objective 0 such that its length is minimal among all feasible paths, or report
that no feasible path exists.

Realistic terrain for large-scale cross-country path-planning can rarely be modelled as binary (i.e.,

obstacles on a homogeneous-cost background). A more useful assumption is that terrain can be modelled as

homogeneous-cost regions. The map is consists of regions, each assigned a value representing the cost rate to

the agent to traverse the region. The weighted-region problem is a generalization of the obstacle-avoidance

shortest-path problem which defines terrain as homogeneous-cost regions.

WEIGHTED-REGION Problem: Given a mobile agent A of negligible size with respect to en-
vironment E, E consisting of a partition of the plane into fixed homogeneos-cost regions ofknown
position, and motion objective 0 consisting of the translation of A to a specified point in environ-
ment E, find a continuous path 2t for A amidst E that achieves objective 0 such that the path in-
tegral of the cost is minimal, or report that no feasible path exists.

The U.S. Army Engineer Waterways Experiment Station, the U.S. Army Engineer Topographic

Laboratories (ETL) and the Defense Mapping Agency (DMA) currently can produce such cost-rate maps of

environments E using a program called Army Mobility Model (AMM), for portions of the earth for which

digitized terrain data is available. This data includes not only elevation data, but cultural, vegetation, and soil

terrain is subdivided according to the maximum speed with which the given vehicle could be expected to

traverse the terrain.
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If an application will require repeated solutions of the shortest-path or weighted-region problems, it may

be more efficient to construct an optimal-path-map which represents optimal paths to a given goal point from

all start points in the plane. If the output map represents solutions to the shortest-path problem, it is called a

shortest-path-map. Some authors use shortest-path-map to refer to maps of the weighted-region problem as

well, allowing the word shortest to mean shortest with respect to a specified cost function. We prefer the term

optimal.path.map, however, to emphasize its basis in the weighted-region problem.

FIXED-GOAL OPTIMAL-PATH-MAP Problem: Given mobile agent A of negligible size with
respect to environment E, E consisting of a partition of the plane into fixed, homogeneous-cost
regions of known position, and a set of motion objectives E which are to translate agent A front
each of the continuum of start points S in the plane to a goal point G, represent te set I of con-
tinuous paths for A in E that achieves objectives Oi in E such that the path integral for each 7i is
minimal over all paths from start point Si to G, or repiort that no feasible path exists.

D. TYPES OF PATH ERRORS

Several classes of errors may occur in algorithms which look for optimal paths. Each algorithm is based

on a model of the path-planning domain with its own representation of reality, and operations manipulate that

representation to produce a solution. For example, terrain in some models is represented by imposing a grid

on the map and assigning a cost to each cell of the grid, while insome models terrain is represented bypolygons

with an assigned cost. Errors may occur either because of inaccuracies in operations within the model or be-

cause of inaccuracies in the model compared with the real-world domain. The first class below are errors of

the former type, while the second and third classes are errors of the latter type.

1. Cost of Model Computed Path versus Cost of Model Optimal Path

Path-planning algorithms execute within the context of their model of real-world terrain. If an algo-

rithm produces a solution path which has a computed cost greater than the minimum cost of some other path

represented within the model, the algorithm has produced amodel sub-optimal path. Such asolution may occur

either intentionally or unintentionally. Some algorithns terminate when a candidate solution is guaranteed to

be within some bound of the true model optimal solution, thus saving processing time at the expense of ac-

ciracy. Ane nmnlVohi' #ner,,l alnr,,-.. h,,,, 6A A*. ".C 111 A-.1-A.._ p" -"

an algorithm which produces solutions with this kind of error is called simulated annealling. It uses stochas-

tic methods to determine when a candidate solution has a high probability of being good enough [Ref. 18]. Er-
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rors of this type also occur because of numerical errors in the mathematical operations performed by the al-

gorithm. Standard numerical analysis techniques can be used to study these errors and attempt to reduce them.

2. Cost of Model Optimal Path versus Cost of Real-World Optimal Path

When the cost of the optimal path within the model is different from the actual cost of a path between

the same two points in the real world, an error of the second class has occurred. Even the actual measurement

of a path cost is only an approximation of reality, so any model produces at least some small error of this kind.

The amount of this kind of error produced is an important consideration in choosing among algorithms. For

example, as discussed in Section E below, the wavefront propagation algorithm may produce solutions which

are optimal in its grid-based model, but which have as much as 7.6% greater cost than an actual path between

the same two points as measured in the real world.

3. Location of Model Optimal Path versus Location of Real-World Optimal Path

A model optimal path could still be a valuable representation of a real-world optimal path despite a

larger cost than the true optimal cost if its qualitative behavior was similar enough to the path it represented.

But algorithms may produce solutions which follow quite different routes than the real-world optimal path.

As discussed by Mitchell and Kiersey [Ref. 19], the grid-based model upon which wavefront propagation (see

Section E below) is based allows for multiple paths with the model optimal cost, so only the details of the al-

gorithm implementation determine which one is reported as the solution, and that repoited solution may dif-

fer markedly from the tre optimal path. This type of error may or may not be important depending on the

application to which the results will be applied.

E. RELEVANT OPTIMAL-PATH PLANNING RESEARCH

A taxonomy for categorizing free-space path-planning methods is presented in Figure 6. Algorithms for

fre -space path planning generally transform an infinite search space into a finite one by eliminating all but a

finite number of candidate paths, and then searchingthis finite space using standard techniques such as branch-

and-bound or A* search. Two distinct ways used to effect this transformation to a finite search space are map

discretization and spatial reasoning.
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1. Map Discretization - Wavefront Propagation

Map discretization methods approximate the terrain by imposing a tesselation on the map and

categorizing each cell according to the terrain it overlays, and allow travel only between centers of grid cells.

Alternate representations are possible, for example, where travel is allowed between corners of cells. Since

there are a finite number of cells, there are a finite, though large, rnber of candidate paths (assuming cycling

is prevented). A method popular for its simplicity is called wavefront propagation (see Figure 7) [Ref. 15],

[Ref. 20]. The terrain is approximated by a square tesselation of the map, and paths are approx;mated by al-

lowing motion only from the center of a cell to the center of an adjacent cell. Eight-neighbor adjacency is

usually used, meaning that from a cell, the agent may move to any of the four perpendicularly adjacent cells

or to any of the four diagonally adjacent cells. Because of the restrictions on directions of movement, eight-

neighbor wavefront propagation has as much as 7.6% inaccuracy in that a reported solution may cost as much

as 7.6% more than the real-world optimal path [Ref. 20]. Normally Dijkstra's algorithm (branc,-and-bound

search) is used to expand in all directions from the start point until the goal is first reached. The name wavefront

propagation is used because of the analogy of the expansion of a circular wave in water.

The implementation of wavefront propagation reported by Richbourg [Ref. 21] is a variation of

Dijkstra's algorithm which models the expansion of the wavefront explicitly. The basic mechanism is that time

is incremented in fixed units, and at each time increment the wavefront is propagated outward as far as it can

travel through each cell currently on the wavefront. Each cell which is reached by the wavefront is added to

the wavefront list, and when the cell's cost has been decremented below zero it is dropped off the wavefront

list. During each iteration, cells through which the waveftont has fully passed will propagate the wave to each

of their neighbors. If the neighbor cell has not yet been reached by the wavefront a back-pointer is set back to

the cell on the wavefront and the neighbor cell's cost is decremented according to how far thz wavefrotit can

travel through it in a unit of time. If the neighbor cell has already been reached by another cell on the wavefront,

no action will be taken unless the neighbor cell's cost could be decremented further by the currently propagat-

ing cell than it was decremented by the previous cell. In that case, the pointer is changed to point to the cur-

rent cell and the cost is set accordingly.
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If cells are square and have unit dimensions, time could be advanced in increments such that it would

take I time unit for the wave to pass through a cell of unit cost in an orthogonal direction and 42 time units

in a diagonal direction. For a cell with a cost of c, the wave will take c and r.-42- time units respectively. Al-

ternately, we will adopt the convention that time is incremented in units of 'V 2, so that thewave will progress

2=/c units of distance through a cell of cost c in the orthogonal direction in one iteration, and i/c distance in

the diagonal direction in one iteration. This convention provides that, for cells of integral cost, diagonal ex-

pansion of the wave will always end inside the cell or at its edge, never overflowing into the next cell, so it is

only in the orthogonal direction that it is necessary to check for overflow. Thus we decrement the original cost

associated with a cell by I or by 1T at each iteration, and when the remaining cos! is less than zero, we know

that the wave has passed completely through it. Figure 7 illustrates the mechanics of the wavefront propaga-

tion algorithm. The figure shows a sequence of snapshots of the algorithm, where the remaining cost of each

cell is noted inside the cell, and arrows represent pointers to each parent cell. The arrows are solid when the

cell has been added to the wavefront, and dotted when the cell is not yet on the wavefront but has a back-

pointer assigned.

For a map of m cells, the worst-case time complexity of Dijkstra's algorithm is O(m log m), [Re.

15], or if we consider the two-dimensional nature of the input map, say of size n by n cells, tOh complexity is

0(n" log n). This version does not depend on the costs of cells on the map. But for the vesion used by Rich-

bourg, time complexity is also a functon of initial costs of the cells. Each cell will remain on tje wavefront

until its initial cost c is decremented below zero. The cell's cost will be. decrernented by I or, 4 at each

iteration, so each cell will remain on the wavefront for 0(c) iterations. Each i-Aration that a cell is on-the

wavefront, its eight neighbors will be checked to see if the shortest path yet to the neighbor cell is through the

cell being considered, or through some already-processed cell. This in !he worst-cue where ail cellt have a

cost cmx, if we assume that there is some upper bound on the cost of cells, the worst-case tin complexlty is

O(cmx m). In terms of an n by n input map, the worst-casc time complexity is O(cmM n2). We must for theoreti.

cal reasons make the assumption that there is an upper bound on the magnitude of Cmax, because if cmax is un-

bounded, and as usual is represented in log cux bits, we have that the size of the input map is I c O(log cnmCX),

or 2 c ax. Thus the wors:.case time complexity would be o(2tm). As explained in [Ref. 22]. this type of a-

gorithm has pseudo-polynomial time complexity, i.e., it is polynomial if fhe input size is bo9nded, but ex-
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ponential if the input size is allowed to be unbounded. Both versions of wavefront propagauon have space

complexity of O(m).

Dijkstra's algorithm examines paths in all directions from the start point, regardless of which are like-

ly to lead to the goal point quickest. But extending the algorithm to A* search by introducing an evaluation

function gives large increases in execution speed by focusing the search on paths which seem to be proceed-

ing in the best directions. The evaluation function used in the A* version of wavefront propagation measures

the Euclidean distance from the cell currently being considered to the goal cell. Mitchel and Kiersey [Ref.

19] report an increase in speed for A* search over Dijkstra's algorithm of 1.5 to 20 times.

Increased resolution of the tesselation will not reduce the worst-case inaccuracy ofreported solutions

below the 7.6% upper bound. This inaccuracy, called digifation bic:. arises because of the discrete ap-

proximation of paths. The only way to reduce the upper bound on error caused by digitization bias is to in-

crease the nunber of possible directions the mobile agent is allowed to travel. Sixteen-neighbor wavefront

propagation, for example, allows paths between a cell and the sixteen cells which ae separated from it by one

cell. Richbourg [Ref. 20] showed how sixteen-neighbo; adjacency could decrease the inaccuracy to ap-

proximately 19%.

Not only does digitization bias lead to inaccuracy, it also means that multiple solution paths could be

reported depending on implementation details of the algorithm. Path representations approximate the tue op-

timal path in the actual terrain by connected line segments which lie in allowed directions. So a true optimal

path which for example lies at a 22.50 angle with the borizontal could be represented by one which starts in a

45'3 direction, and then finshes in a horizontal direction, or it could be represented by one which alternates

many timies between Sna!i 450 line s *g&cnts and horizontal line segments, somewhat like computer graphics

routines represent lines with sets of pixels. The latter representation is to be preferred because it more close-

ly approximates the true optimal path, and sor.e researchers have proposed ways to augment wavefront

propagation algorithms to favor paths which have more regular turns, so as to better approximate line seg-

ments. [Ref. 19], [Ref. 20], [Ref. 23], [Ref. 24], [Ref. 25]

Mi.tchell and Kersey [Ref. 19] discuss an implementation ofwavefront propagation called BITPATH

which paitially conip,.nsates fordigitizatior. bias by modifying the vs ay in w i xd-'.cs are computed.

Vossepoel a'ul Sniulders [Ref. 261 developed an estimate for the actual ditatce over a -.' - ptimal path given
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a digitized approximation which lowers the estimate each time the approximation path turns, based on the idea

that each turn point suggests overestimation of Euclidean distance. BITPATH incorporates this estimate as

the cost function of A*, i.e., the value assigned to a cell to represent the cost of the best path from the start cell.

They claim a significant improvement in BITPATH's ability to find a solution which not only has minimum

cost of all possible paths, but also lies close to the true optimal path. [Ref. 19)

In an attempt to reduce the dependency of accuracy on resolution, data representation schemes that

use multiple resolutions have been introduced which use hierarchical algorithms which are generalizations of

wavefront propagation [Ref. 27]. One such scheme uses quad-trees to represent larger homogencous areas

with single cells [Ref. 28]. With this approach, rectangles are inscribed within homogeneous-cost regions of

the input map, and then successively smaller rectangles fill out the shape of the regions. This representation

is then searched much the same as in wavefront propagation.

A parallel processing approach to wavefront-propagation path planning has been implemented in sup-

port of the DARPA-sponsored autonomous land vehicle built by Martin Marietta [Ref. 29]. Multiple proces-

sors are utilized to sweep horizontal bands of the map, at each cell replacing the current cost of its neighbors

if the current cost of the cell plus the cost to move to the neighbor is less than the neighbor's current cost. Mul-

tiple sweeps are employed until the cost values stabilize. Richbourg [Ref. 20] suggests an alternative based on

mesh-connected architectures in which computational elements in the architecture would model cells in the

map, yielding an O(n) algorithm, and Jorgenson [Ref. 301 presents a wavefront propagation implementation

on a neural-network machine.

2. Spatial Reasoning Methods

Spatialreasoning uses principles about how optimal paths must behave in the presence of terrain fea-

tures to constrain the search space for optimal paths. A simple example of this type of reasoning is that op-

timal paths are always straight lines across homogeneous terrain, and in the case of binary terrain (obstacles

on a homogeneous-cost background), turn only at obstacle vertices (see Theorem 1-2, Appendix A). A more

general type of discretization than that used by wavefront propagation takes place when terrain features ae

modelled using polygons. Here, error in model optimal paths versus real-world optimal paths can be much

less than with rectangular tesselation, but since algorithms which use this type of discretization have com-
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plexities which depend on the number of terrain-feature vertices in the map, there is a trade-off between ac-

curacy of representation and speed of execution.

Path-planning methods have used at least four distinct techniques which can be considered spatial reason-

ing techniques, with many algorithms appealing to more than one of the techniques. They am visibility-graph

methods, the Snell's Law local optimization criterion, the continuous-Dijkstra paradigm, and methods using

optimal-path maps.

a. Visibility Graphs

Visibility-Graphimethods [Ref. 1] solve the polygonal obstacle-avoidance shortest-path problem

(binary ternain), constructing a graph where each of the n obstacle vertices plus the start and goal points are

nodes, and undirected arcs connect nodes whose vertices are intervisible, i.e., can be connected by a line seg-

ment which does not intersect any obstacle edge. Because of the spatial reasoning principle about binary ter-

rain stated above, it is assured that every segment of an optimal path will occur in the visibility graph, so to

find an optimal path it is sufficient to search the graph using branch-and- bound search.

Several algoii thms have been given to construct the visibility graph. The naive dgorithm checks

every pair of vertices against every edge to see if the line segment connecting them intersects the edge. Since

there are O(n2) pairs of vertices and O(n) edgm;, tis brute force algorithm has worst-case time complexity

O(n3). Lee [Ref. 31] and Mitchell [Ref. 32] explain an O(n2 log n) algorithm which begins by constructing for

each vertex a list of the other -trlies soiled acconling to the heading of '6e li= between them in O(n2 log n)

time, and then for each ofthen sorted sets, doing an angular sweep checking for intersection against the closest

obstacle edge. Wel [Ref. 33] ai-d Asano [Ref. 34] used he fact that n sorts can be done in 0(n2) time to build

an O(n 2) visibility graph cofstruction algorithm. C-bosh and Mount [Ref. 35] give an algorithm to compute

the visibility graph of n di4joint line segments in time O(e + n log n), where e is the number of edges in the

visibility gralgh (an output-ensitive complexity). Since e may be as small as n or as large as n2 this algorithm's

worst-case time complexity ranges fror. Otn log n) to 0(n2) depending on the size of the visibility graph.

Once the visibility graph has been constructed, Dijkstra's algorithm or the special case of it called

A* (see Section A), may be used to search for the shortest path from the start to the goal. The worst-case time

complexity of Dijkstra's algorithm is given by Aho, Hopcroft, and Ullman as O(e log n) [Ref. 36]. Again, be-

cause of the range of e, thls means that Dijkstra's algorithm is, in the worst case, O(n 2 log n), or with a sparse
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visibility graph, O(n log n). A*, an "informed" version of Dijkstra's algorithm, his time complexity of the

same order class in the worst case [Ref. 15], although actual implementations should show a significant em-

pirical superiority of A*. Thus, the shortest-path problem can be solved by a visibility-graph approach in O(n2

log n) time.

For the variation of the weighted-regio" problem (r-r generalization of the shortest-path problem)

given by Rowe [Ref. 2] which considers roads and rivets as well as obstacles, a visibility-graph-influenced

approach is used to transform the search space to a finite one. Reasoning about how optimal paths must be-

have in tie presence of roads and rivers leads to the conclusions that a path will enter or leave a road at only

one critical angle, and that paths either cross a river without changing heading, or go around river-end vertices

as they would an obstacle vertex. A visibility graph is constructed using as nodes all obstacle and river ver-

tices and start and goal points; roads and rivers are not considered to obscure visibility. Additionally, line seg-

ments from each node are constructed which intersect each road at the critical angle. If the points are otherwise

visible, tie road-interrection point is added as a node and the graph reflects that the points are connected. Fur-

ther, all nodes which lie on contiguous road segments are connected. This graph is then searched using

Dijkstra's or A* algorithms as above. Figure 8 shows the edges of an example generalized visibility graph. In

this figure, solid lines represent roads, dotted lines represent rivers, and filled polygons represent obstacles.

Narrow dashed lines represent V-gra, edges and The thick dashed line represents the optimal path from start

to goal points. Similar results for liYar features are reported by Gewali et al. [Ref. 37]

b. Snell's Law Local Optimality Criterion

Optimal paths in the weighted-region domain obey an analogy to Snell's Law of Refraction in

optics [Ref. 20], [Ref. 3], [Ref 38]. Snell's Law is based on Fermat's Principle which says that light seeks the

path of minimum time. Fermat's Principle has an analogy in the weighted-region problem, since time is a cost

proportional to distance travelled in a homogeneous-index region. Thus optimal paths follow Snell's Law.

SneU's Law for Optimal Paths: An optimal path passing through an edge between two regions
with costs-per-unit-distance cl and c2 obeys the relationship ci sin 01 = c2 sin 02, where 01 and 02
are the angles of incidence and refraction respectively, i.e., the angle from the path in the first region
to a line normal to the edge, and the angle from the path in the second region to a line normal to the
edge. (See Figure 9.)
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Note that Snell's Law is a criterion for local, not global, optimality; a non-optimal path may obey Snell's Law

at each edge crossing. Therefore, its usefulness is in constructing candidates for global optimality.

The analogy to Snell's Law applies to crossings with an angle of incidence and refraction such

that 01 and 02 are both less than or equal to 900. In the path-planning domain optimal paths cannot occur

that have angles of incidence greater than a critical angle which is Oc = sin1t cdc/, where ci < cj and c is the

cost of the region on the incidence side of the edge. For example, in Figure 10 an optimal path may go from

point S to any point to the left of point A, but may not go immediately to its right, because the angle 0 that

line AB would form with edge PQ of the high-cost region would exceed ec. This is called total internal

reflection, in optics. Another example of such behavior is found in Figure 11, where a path SABG follows

Snell's Law making an angle exactly the critical angle at point A and then at B.

In Figure 12, paths just to the left of SV will be refracted according to Snell's Law as is path

SVA, while paths just to the right of SV will be refracted as is path SVB, but paths which go through point V

may lie anywhere within the wedge formed by AVB. If we consider that the edges which meet at point V are

actually continuously curved there, Snell's Law will apply as the local curvature increases to infinity. The

same behavior happens in Figure 13, at vertex V of an obstacle.

Finding an exact Snell's-Law path between two points through a sequence of edges requires an

iterative search. Richbourg [Ref. 20] and Mitchell [Ref. 15] both discuss the lack of a closed-fonn solution for

the problem of finding the Snell's-Law path between two points. But since it is an easy task to trace a Snell's-

Law path from a point with a given heading, both conclude that an iterative search is the best approach. Rich-

bourg studies the effectiveness of four techniques for finding, to within a given error, a Snell's-Law path across

one edge. He used experiments applied to bisection search, golden-section search, false-position search, and

a modification called heuristic false-position search, and found that the latter converged more than twice as

fast as any of the others on the average, and also had the least standard deviation of the four methods. His

heuristic false-position method attempts to avoid the situation where the search approaches the solution from

the same side at each iteration, since false-position tends to converge more quickly when the solution is brack-

eted.

Mitchell's algorithmn uses a numerical routine to approximate the Snell's-Law path across n edges

which is of a time complexity that he calculates is bounded by O(n'L), where L is a measure of the precision
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of the problem instance. This routine is used because of its proven worst-case speed, but he also reports a coor-

dinate descent method for solving a Snell's-Law path across several edges which is said to have fast empiri-

cal convergence. This method uses as a starting path a sequence of line segments between start and goal points

through the midpoint of each edge. It then successively adjusts each crossing point in constant time to satisfy

Snell's Law with respect to its two neighbor crossing points, iteratively apllying these adjustments until the

path is within a specified error of the goal.

c. Continuous-DlKkstra Paradigm

Path-planning methods for the weighted-region problem have used one of two similar ap-

proaches. both relying on Snell's Law and related properties as discussed above. Mitcbell's algorithm uses

what he calls the continuous-Dijkstra paradigm, because of its analogy to the discrete Dijkstra algorithm [Ref.

3], while Richbourg's algorithm uses recursive wedge decomposition [Ref. 20], [Ref. 21]. Whereas Dijkstra's

algorithm must be used over terrain approximated by map discretization, the continuous-Dijkstra and the recur-

sive-wedge-decomposition paradigms are used over terrain in which terrain features are represented by

polygons or piecewise-linear curves.

The continuous-Dijkstra paradigm, analogously to searching a finite graph for the next closest

node in Dijkstra's algorithm, searches in a concentric plane sweep outward from the start point, processing

each terrain-feature vertex as the sweep reaches it. The algorithm requires the triangulation of the terrain map,

a task for which standard algorithms are available from computational geometry. Each vertex has associated

with it a label which represents the cost of the best path yet found to it, just as in the discrete Dijkstra algo-

rithin. Additional points, called fronlier points, also have labels associated with them. They are points in the

interior of an edge at which critical reflection occurs (see above).

The key data structures for Mitchell's algorithm are first, a list of subsegments of tefrain-feature

edges called candidate interials of optimality, and second, a priority queue called the event queue after the

terminology used in the plane sweep paradigm. Candidate intervals of optimality are the extent of an edge over

which an optimal path could possibly lie by the constraints of Snell's Law. Intervals include information about

the root, or last previous vertex through which the all optimal paths which cross the interval lie, and about the

paths from this root to either end of the subsegment interval. The event queue contains those points which are

end points of some candidate interval, or are frontier points in the interior of an interval.
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At each step of the algorithm, the point on the event queue with the smallest cumulative cost

from the start point is chosen. If it is a frontier point, then the candidate interval is said to propagate. In other

words, more candidate interals on other edges are found each of which includes an edge subsegment to which

optimal paths could arive through the initial interval. The appropriate points have their costs computed and

ae added to the event queue. When the event queue becomes empty, the algorithm terminates, and the goal

point has been labelled with its optimal cost. The list of candidate intervals holds, at any point in the algorithm,

the best path or set of paths so far from the start point to the interval, so the interval which is the goal point is

found in order to retrieve the optimal path. This algorithmi has at most O(n3) event points, and uses the 0(n4L)

routine discussed above to find a Snell's-Law path between two points, and so has a worst-case time com-

plexity of o(n7 L), where n is the number of terrain-feature vertices and L is a measure of the precision of the

problem instance.

Richbourg's algorithm uses A* search to select a group of paths for refinement which offers the

best hope of containing the optimal path from the start point to the goal (Ref. 20]. As refined Rowe and Rich-

bourg [Ref. 39], a well-behavedpath subspace (WBPS) is defined as a set of paths which cross the same ter-

rain- feature edges and vertices from the start to the goal. A wedge is a partial WBPS which is a set of paths

crossing the same edges and vertices from the start point to some intermediate point oredge.Refining a wedge

means finding within the wedge the nearest intermediate point which has not yet been considered, finding a

Snell's-Law path to that point, and splitting the wedge into three sub-wedges based on the cases which arise

from Snell's Law. These three wedges are added back to the A* agenda for further consideration. Two of the

three wedges are those consisting of paths which pass to the "left" and "right" of the point at which splitting

occurs, while the middle wedge is constructed based on the possible behavior of paths emanating from the

point. The term recursive wedge decomposition refers to the successive splitting of wedges as they are selerted

from the A* agenda and refined.

The search space for recursive wedge decomposition is a known feasible start-to-goal path and

a set of wedges with associated lower-bound values of cost function plus evaluation function for each wedge.

These lower-bound values represent the lowest possible cost for a path within the wedge. The known feasible

path is replaced whenever a better path is found, so that it is always tue best known path. The single operator

for state transformation is wedge refinement. The algoritlun uses a different terminati,n criterion than that
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normally used by A* in path-planning applications. Normally the search can stop when the first element on

the agenda is a complete solution, because the agenda is ordered by increasing cost-function plus evaluation-

function values, and for a complete path the evaluation function equals zero and the cost function is the ac-

tual cost from start to goal. However, in this search space, the elements on the agenda aie wedges, r/ot patbs.

The search terminates when the best wedge on the agenda (and hen,.e all other wedges on the agenda as well)

has a cost-function plus evaluation-function value that exceeds the upper-bound cost of the current best feasible

known path, or when the agenda is empty. In either case the least-cost known path is the solution. W-dges are

pruned, or removed from the search space, according to a set of criteria based on Snell's Law and otber spa-

tial reasoning. An implementation of Richbourg's recursive-wedge-decomposition algorithm is repoited to

have empirical performance which strongly suggests an O(n2) average-case time complexity, wbere n is the

number of terrain-feature vertices. Worst-case time complexity was reported to be O(nln 2) [Ref. 391.

The two algorithms are quite similar in some respects. The candidate interval of the continuous-

Dijkstra algorithm along with its associated data about boundary paths corresponds to the wedges of the recur-

sive-wedge-decomposition algorithm, and propagation of intervals corresponds to refinement of wedges. The

same properties of Snell's Law refraction and critical reflection are used in determining how to refine wedges

(propagate intervals). However, there are differences of emphasis. The focus of the continuous-Dijkstra algo-

rithm seems to be finding apolynomial-time worst-case algorithm, while the A* search of the recursive-wedge-

decomposition algorithm focuses on average-case performance. The continuous-Dijkstra algorithm requires

a triangulation of the input map, a time-consuming preprocessing step which nevertheless does not raise the

worst-case time order ofcomplexity, while the recursive-wedge-decomposition algorithm takes as input a map

of po!ygonal terrain features. The recursive-wedge-decomposition implementation reported in [Ref. 21] was

used in our research for initialization in our Chapter VI algorithms.

A generalization of the weighted-region problem allows anisotropic costs in regions, that is, costs

which are a furction offthc direction of travel of the mobile agent, for example, in steeply sloped terrain. Ross

[Ref 40) solves the anisotropic weighied-region problem using a variation of recursive-wedge decomposition.

Based on the effects of gravity, friction, and maximum force which can be applied by the agent, there are

sevt.ral sets of impermissible headings which may constrain ira,,el across a polygonal region. A range of uphill

headings may be ruled cut by maxinum force available, loss of traction, or catastrophic overturn, and a range
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of sidesiope headings may be ruled out by catastrophic overturn considertions, Additional optimality con-

siderations include a range of downhill braking headings within which the agent must lose energy by braking,

and Snell's Law for optimal paths as described above. Given these constraints, thare ate only four ways an op-

timal path can cross an anisotropic region. This insight leads to an algorithm which recursively decomposes

groups of potetitially optimal paths according to which terrin-feature vertices and edges they cross (window

sequences), and applies A* search to these groups of paths, using various pruuing criteria to limit the

space.

d. Optimal-Path Maps

Several researchers have used optimal-path maps (OPM), or as they a commonly called with

respect to binary terrain, shortest-path maps, as a means of solving the shortest-path, binary-terrain problem.

Lee and Preparata [Ref. 41] give an O(n log n) algorithm to constpuct an OPM for the special case that all

obstacles are parallel line segments, and Reif and Storer [Ref. 42] give an O(mn + a log n) aLgorithmn, whese

m is the number of obstacles and a is the mimber of obstacle vertices. Mitchel. [Ref. 4] gives an O(kn logg 1a)

algorithm for the general case, where k is an output-sensitive parameter somewbat related to the density of

obstacles in the plane.

The algorithun of Lee and Preparata uses the plane sweep paragigm ad €ontcts both the ep.

timal-path tree and the planar partition with ne sweep of the plane. Assuming -with.t .oss of Pen.rality that

the parallel line-segment obstacles arc vertical and the start point is to the left ofall Obstles, the sweep line

is also vertical and begins at the start point. The obstacs are indexed by theix-coowtinatts, and t& initial

event queue contains the x-coordinates of each obstacle. As the sweep lh ct.wn;ers an obstalce, it !ocates

the two endpoints in regions of the OFM so far coristruied and exteodg the yt:nal-pAth Me by insertiVE a

node for each obstacle endpoint into the tree at the node.associated with ts xgione. Then it construc the

tIxrec bisevors, or homogeneous-behavior regicn boundaries, which begin m. , aci , two of which ae

rays and one of which is a hyperbola segment. It updates a list of "active" biwtots iy deleting previowly-.

fo kin hisectors which intoersect the currit cbstacle. 2nd adds the new hb.is; .*,*.?ro 4kv Twj3 ft I the

event queue by in.emrillg poinis of intersection of the new bisectors wid wy c-her.biectors. Only the left-

most such intersection must be recorded. At each stage, the OPM is updated w 'Y bu!h er points of a bisec-

tor are found. [Rcf. 41)
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The algorithm due to Reif and Storer takes as input a triangulation of the obstacle edges, and

recursively processes these triangles to find shortest paths from the start point to each vertex of the triangula-

tion. The algorithm "grows" outward from the start point, constructing a partition of the plane. The discussion

of tWs algorithm in Reference 42 is somewhat obscure, as it does not use the terminology of shortest-path

maps, and depends on other algorithms and data structures not fully explained in Reference 42.

A solution to the optimal-path-map problem which takes a different approach is presented by

Payton [Ref. 43]. It is built on the wavefront propagation algorithm, and consists of storing the back-potmers

for each cell. This array of pointers is called a gradientfield, and provides information about which direction

a mobile agent should go from any point on the map in order to travel along an optimal path. This approach

could he used with other point-to-point path planners as well, although with greatly increased preprocessing

time, by simply running the path planner for a finely-grained array of start points, and storing the initial direc-

tion of the resulting optimal path for each run.

Mitchell's algorithm introduces the concept of"generalized visibility" within the obstacle space,

and constructs shortest-path maps for each new level of visibility. This algorithm begins by computing the

visibility polygon from the start point, i.e., the polygon containirg all points in the map which are not occluded

from the start point by an obstacle edge. Then it appeals to the algorithm for constructing generalized Voronoi

diagrams within simple polygons due to Aronov [Ref. 13] which takes into account that boundaries may be

hyperbolic or linear, depending on the costs of optimal paths from obstacle vertices. Using this generalized-

Voronoi-diagram concept, Mitchell's Ipproach constructs a shotest-path map for the visibility polygon. Then,

the algorithm computes the sectond level of visibility, that is, extends the visibility polygon to include all points

visible from any part of the initlm visibility polygon. Again, it reduces the problem of extending the shotest-

path map to the problem of defining appropriate Voronoi-diagram problems on simple polygons. This process

continues iteratively until all obstacim have been f(mi by the generalized visibility process. [Ref. 4]

So essentially, Mitcheil's algoihm 1i doing a concentric plane sweep (although not using this

terminology), where at each iteration, the newa 2eti:zed visibility polygon is found, a Voronoi diagram is
constructed for the obstacles in the polygon, and these Voronoi diagrams a," merged with the Voronoi diagram

from the previous iterations. The computation of visibility polygons does use the plge sweep paradigm ex-

phcitly, sweeping a "geodesic" (or optimal) path angularly about the sn.1 poin. In order to deal with severl
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cases in which a single sweep would not correctly identify all the event points, two sweeps, one in each direc-

tion about the start point, are done to compute each visibility polygon. This algorithm operates in O(n log 2n)

worst-case time, where n is the number of obstacle vertices in the input map. [Ref. 4]

The focus of this dissertation is on the construction of a planar partition for the weighted-region

problem. In keeping with the convention discussed above of referring to solutions to the weighted-region

problem as optimal paths instead of shoitest paths, we refer to such apartition as an optimal-pathmap. Mitchell

[Ref. 15], claims to have constructed an optimal-path map for the weighted-region problem, but does not men-

tion the task of constructing region boundaries. His algorithm appears to construct, instead, an optimal-path

tree, a necessary and time-consuming first step in constructing an optimal.path map, but gives little attention

to construction of the planar partition. This confusion may arise from the fact that in the binary-terrain domain,

construction of region boundaries is straightforward, a fairly insignificant part of the total problem, while the

added complexity of the weighted-region problem creates additional complexities in the characterization of

boundaries and the construction of the optimal-path map. In binary terrain, the standard Voronoi-diagram

methods which construct straight-line bisectors only need to be extended to construct hyperbola segments as

well, while in weighted-region terrain, such bisectors take onmany differentforms. Thus theproblem of "defin-

ing the appropriate Voronoi-diagram problem", as Mitchell does in the binary case, is a much more difficult

one.
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I1. MODIFYING WAVEFRONT PROPAGATION TO FIND SUB-OPTIMAL

SOLUTIONS TO THE OPTIMAL-PATH-MAP PROBLEM

A. OVERVIEW

Wavefront propagation is well-suited as a method for solving the fixed-goal optimal-path-map problem

(see Chapter II, Section C for a complete description of this problem), if the inherent error is acceptable in the

application domain. The basic wavefront propagation algorithm can easily be extended by considering, for

each cell on the wavefront, whether there should be a boundary between it and its adjacent cells, using one of

the three definitions of "similar behavior". What for the point-to-point problem was a disadvantage of

wavefront propagation, that the algorithm in its basic form searched blindly in all directions without regard to

the location of the goal, becomes an advantage for the optimal-path-map problem because the paths from each

cell in the map are available as a by-product of the algorithm simply by tracing the back pointers. Another ad-

vantage is that the asymptotic worst-case time complexity of the extension is the same as the basic algorithm.

In chapter Ithe path-generalizing function was defined in terms of "similar behavior" of paths. In this

chapter we solidify the meaning of "similar behavior" to group paths in three different ways that make sense

for wavefront propagation, thus defining the path-generalizing fiuction in three ways. The first way produces

boundaries between adjacent cells whose goal paths turn at cells which are not "equivalent". The second way

uscs a set of heuristics to group cells whose goal paths converge. The third way groups cells according to

wheth-e their paths turn at the same terrain-feature vertices and edges.

It might be possible to bypass the need for an optimal-path map altogether by simply storing back pointers

for every cell in the map (for example, An the work of Payton discussed in Chapter H [Ref. 43], such a database

ofpointers is called a gradientfield). Given a start cell's coordinates, the path to the goal could be reconstructed

by following the pointers back to the goal cell. There are two disadvantages to this method. Firt, the average-

case time complexity to reconstruct a backpath is 0(n), for an input map of size n by n. Second, the storage

requirement for the optimal-path map is O(n2 ). To avoid these problems, we store an optimal-pa) map.
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B. MODIFYING THE PATH-GENERALIZING FUNCTION FOR WAVEFRONT

PROPAGATION OPTIMAL-PATH-MAP CONSTRUCTION

1. The Pure Version of Wavefront-Propagation Optimal-Path-Map Construction

The most natural description of a path is the list of all cels from start point to goal point. Requiring

two such path lists to be identical in order to represent "similar behavior" would result in every cell in the map

comprising its own homogeneous-behavior region. But it is unnecessary to include all cells in a path segment

which lie in on the same straight line. So another definition of a path list is the list of cells at which the op-

timal path turns, or more precisely, the cells in the backpath of a start point for which each back-pointer of the

cell is in a different direction than the back-pointer of the cell's parent.

This definition still induces many distinct regions. A modification is to specify that two turn-point

cells on different backpaths are considered equivalent if one of them lies on the first leg of the optimal-path

list which starts at the other tum-point. Thus, for example, the two cells (5,3) and (6,2) in Figure 7 would have

optimal-path lists [(5,5),(7,7)] and [(6,6),(7,7)] respectively; cells (5,5) and (6,6) would be considered

equivalent because the optimal-path list of cell (5,5) is [(7,7)] and (6,6) lies on the line between (5,5) and (7,7);

so cells (5,3) anti (6,2) lie in the same region.

We call the version of the wavefront propagation optimal-path-map algorithm which uses this defini-

tion of the path-generalizing function thepure version, since it is based on asimple definition of homogeneous-

behavior ;,gions. Chatges to the basic wavefront propagation .igurithm in Appendix B necessary to implement

this are presented in Table I below (two pages). The key ch.nge is a check for boundaries between each cell

on the wavefront and its four neightors. This is accomplished in procedure expnd.cell which is executed

once for each cell on the current wavefront. Procedure expand-cell cals procedure check-for-boundaries

which compares the path lists of each of the cell's neighbors with the expanding cell's path list. .ti cking for

.equivalency" as defined above. Whenever a new cell is added to the wavefront, its path list is set by proce-

duce set.optimal-path-list which is called from within orthogonA!.expand, diagonal-expand, and overflow.

These procedures, although not shown here, are modified from the versiu,s shown in Appendix B by adding

a call to set-optimal-path-list after each new cell is added to the wavefront list or the overfloms iist. When the

procedure check-equivalent-paths called by check-for-boundaries determines that two patlh lists are not
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TABLE 1

WAVEFRONT-PROPAGATION OPM ALGORITHM

algorithm wavefront-propagation-opm (Algorithm 11-1)
input: Goal-Point /* REVISED from algorithm B-I */
I /* in Appendix B. */
Wavefront:= Goal-Point:
Boundary-List := empty list;
while (Wavefront not empty) /* Iteratively expand wavefront */

expand-wavefront(Wavefront); /* until nothing remains on it. *1
/* end of wavefront-propagation-opm *1.

procedure expand-wavefront /* REVISED PROCEDURE */
input: Wavefront

if (Wavefront is empty) /* Base case of the recursion. */

Cells-for-New-Wavefront empty list;
New-Wavefront : = empty list;

else

Current-Cell := cell on Wavefront with win remaining cost;
expand.cell(Current-Cell);
Rest-of-Wavefront := Wavefront less Current-Cell;
expand-wavefront(Rest-of-Wavefront, /* recursive call to expand-wavefront */
New-Wavefront := Cells-for-New-Wavefront /* Note: Wavefront is recursively emplied */

appended onto front of New-Wavefront; /* out level by level and New-Wavefront */
/* is built up as each level returns. */
/* end of expand-wavefront */

procedure expand-cell /* REVISED PROCEDURE */
input: Current Cell

/* initialize flag assuming that Current-Cell */
Finished-With-Cell :=TRUE; /* will not stay on Wavefront */
check-for-boundaries(Current-Cell); /* ADDED TO THIS VERSION */
Boundary-List := New-Boundary-List appenled /* ADDED TO THIS VERSION */

to Boundary-List;
Cells-for-New-Wavefront := empty list;
for (New-Cell := North-, East-, South-, and West-Neighbor)

orthogonal-expand(Current-Cell,New-Cell);
for (New-Cell := Northeast-, Southeast-, Southwest-, and Northwest-Neighbor)

diagonal-expand(Current-Cel,New-Cell);
if not (Finished-With-Cell) /* keep Current-Cell on Wavefront */

Cells-for-New-Wavefront := Current-Cell appended
onto Cells-for-New-Wavefront: /* CHECK FOR GOAL DELETED 1

/* end of expand-cell */
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TABLE 1 (CONTINUED)

WAVEFRONT-PROPAGATION OPM ALGORITHM

procedure check-for-boundaries /* NEW PROCEDURE */
input: Current-Cell

New-Boundary-List := empty list;
for (Neighbor-Cell := each of

Current-Cell's eight neighbors)
if not (Parent-Pointer of Neighbor-Cell = nil) /* if wavefront has reached neighbor, *

/* a boundary check can be made. */
OPLI := OPL-Parent of Neighbor-Cell;
OPL2 := OPL-Parent of Current-Cell;
if not (cleck-equivalent-paths(OPLI,OPL2)) /* update new boundary list */

New-Boundary-List := edge or corner
connecting the two cells appended to New-Boundary-List;

/* end of check-for-boundaries */

procedure set-optimal-path-list /* NEW PROCEDURE /
input: Cell
I /* NOTE: There are two parent-pointer fields in '/
if (Parent of Cell is on line segment between /* the "Cell" array - "Parent" field is predecessor */

Cell and OPL-Parent of Parent of Cell) /* of Cell on the backpath: "OPL-Parent" is the /
OPL-Parent of Cell := OPL-Parent /* predecessor on the Optimal-Path List. *1

of Parent of Cell:
else

OPL-Pareut of Cell := Parent of Cell;
} /* end of optimal-path-list */

procedure check-equivalent-paths /* NEW PROCEDURE 1
input: OPLI, the OPL-Parent of Neighbor-Cell

and OPL2, the OPL-Parent of Current-Cell
output: returns TRUE if paths are

equivalent, FALSE otherwise.
I
if ((first cell of OPLI = first cell of OPL2) /* Paths are equivalent if lirst */

or (first cell of OPLI is on the line /* pair of cells are equivalent I
between first and second cells of OPL2)

or (first cell of OPL2 is on the line
between first and second cells of OPLI)

retum(TRUE);
else return (FALSE):
} /* end of checkoequivalent-paths 1
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equivalent according to the above definition, the edge witich the two cells share is considered a boundary and

is added to a list of boundaries.

Since each cell with non-infinite cost is on the wavefront once during the algorithm, we will in the

end check each cell on the map. For two adjacent cells, if one cell is has been reached by the wavefront and

the other has not yet beer. reached, the second cell's path list will not yet be determined, so a boundary check

is not yet possible. But when the second cell is finally put on the wavefront, its path list is set and a check of

its neighbors will consider the first cell. So it is guaranteed that all pairs of neighbors will be checked by the

end of the algorithm, and all boundaries between cells will be detected.

Note that references to the start point have been deleted from the algorithm, since we are looking for

paths to all start points. The initial center of the wavefront is called the goal point. Also, there is no possibility

for the algorithm to fail because of an inability to find the start point. When no cells remain o. the wavefront,

the program is done. Then the list of boundaries will be transformed into the appropriate data stnrcture, a doub-

ly-connected edge list, and the path inforr.,ation will be transformed into an optimal-path tree.

The procedure set-optimal-path-Iist will be called by procedures orthogonal-expand, diagonal-ex-

pand, and overflow each time a new cell is appended onto the Cells-for-New-Wavefront or Overflow fists

respectively.

Figure 14 (on two pages) shows the result of applying the pure definition of the path-generalizing

function to wavefront propagation, with a map consisting of a single obstacle and a single high-cost area. The

figure shows successive snapshots over time as the wavefront expands anyl the back-pointers are set. The

wavefront expands from the goal point in the center, and back pointers show the optimal path from each start

point io the goal point. Homogeneous-behavior boundaries are shown as dotted curves. (Several horizontal

backpaths appear darker than the others only because of the resolution of the priter used.) Figure 14a shows

the first three snapshots, and Figure 14b shows the fourth snapshot and a final frame with backpaths removed

for clarity.

Several humogeneous-behavior boundaries in Figure 14 are spurious, that is, are not predicted by

theoretical anal) sis. (This analysis is presented in Chapter V.) Near the upper left corner of the high-cost area,

for example. (see Frame 5 in Figure 14bi three straight homogeneous-behavior boundaries emanate from a

point on the edge of the Ifigh-cost area, one is vertical, one is at a 450 angle, and one is horizontal. The latler
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two of these boundaries do not have analogues in the theoretical case, and the first, analogous to the "shadow"

boundary expected at that vertex, is offset from the vertex of the high-cost area does not appear.

Some spurious boundaries are generated because straight lines are being approximated by piecewise-

linear curves in the eight allowable propagation directions. Several examples occur to the right of the high-

cost area and to the left of the obstacle. Multiple parallcl boundaries are generated by the upper-left edge of

the obstacle, although all but the topmost boundary are spurious, while the two lower boundaries generated

by the lower-left edge are both predicted by the analysis of Chapter V. The reason for the difference is that

the lower-left edge is positioned at a 450 angle to the vertical, allowing a single straight path to lie along il.

Thus the above boundary-detectien heuristic does not detect spurious boundaries along the edge because there

are no turn points on the path. But the upper-left edge lies at less than a 450 angle with the horizontal, and so

the path along it must "stair-step" its way to the upper vertex, causing boundaries to be generated. A similar

error occurs along the upper right and lower right edges of the igh-cost area, where the stair-step nature of

the edges causes spurious exterior boundaries to appear. Further spurious boundaries occur in the inside of the

high-cost area, and outside it just above its rightmost vertex.

Optimal-path maps generated by the pure wavefront propagation OPM algorithm will be useful if

these spurious homogeiteous-behavior boundaries do not matter. But there are approximately twice as many

boundaries as are predicted by theoretical analysis, so storage and run-time speed are correspondingly less ef-

ficient.

2. The Diverging-Path Version of Wavefront-Propagation Optimal-Path-Map Construction

Another approach is based on the idea that two adjacent cells whose paths diverge should be in dif-

ferent regions, and so a boundary must exist between them. A way of detecting divergence ofpaths is to check

the distance between die nth-generation ancestors of two adjacent cells. If the ancestors more than one cell

apart, the cells are defined as diverging paths. In other words, we define the path-generalizing function so that

it maps cells to sets of pahs which do not diverge.

What should the value of n be? In other words, how far back along the paths of the two cells being

compared should we check? If n is small, there will be fewer checks to perform, enhancing efficiency. If n is

large some small terrain features may be overlooked by the divergence rle. On the other hand if n is large,

"e can iandle situations, such as boundar) emanating from the obstacle in Figure 14b, Framne 5, %,here back-
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paths may parallel each other for some distance before diverging. But this situation can be taken care of by

adding a second condition which says that two cells are in different regions if their parents are in different

regions. Even with this rule, however, if n = 1, there are situations where the parents of two cells with diverg-

ing paths are adjacent; choosing n = 2 seems to give the best results. An additional necessary heuristic is that

two paths are in different regions if a cell between the two ancestors being checked is a terrain feature cell.

This handles special cases such as very acute obstacle vertices, or paths on opposite sides of a river. Figure 15

(on two pages) shows the result of applying these heuristics to wavefront propagation. We call this the diverg-

ing-path version of the wavefront-propagation OPM-generation algorithm.

So there are three heuristics used in the diverging-path version. First, adjacent cells whose second-

generation ancestors are more than one cell apart are in different regions. Second, adjacent cells are in dif-

ferent regions if their parents are in different regions. Third, cells are in different regions if their

second-generation ancestors have a terrain-feature cell between them.

This variant algorithm is not much better than the pure variant, as can be seen by studying Figure

15b, Frame 5. Here too few boundaries are generated, and a few spurious boundaries appear as well. Those

boundaries defined in Chapter V as opposite-edge boundaries, i.e., boundaries which distinguish between

paths which go in opposite directions -around a terrain feature, are the ones best detected by the diverging-path

version. Shadow boundaries, i.e., boundaries which distinguish between paths which go through a terrain-fea-

ture vertex from those which bypass it, are not detected at all. Spurious boundaries arise within homogeneous-

cost areas. The homogeneous-cost area in Figure 15 has spurious boundaries just above its rightmost vertex.

But for purel) binary terrain, i.e., obstacles on a homogeneous-cost background, the diverging-path version

may be appropriate.

3. The Vertex-Edge Version of Wavefront-Propagation Optimal-Path-Map Construction

Any variant algorithm that relies solely on the turns in a path will misinterpret some turns as due to

the terrain when in fact they were due only to the mechanics of the algorithm (e.g., the eight propagation direc-

tions), and vice versa. Also, the diverging-path variant only detects a certain class of boundary. A way to at-

tack both of these problems is to plot boundaries based on how terrain-features affect optimal paths.

In terrain %% ih piece%% ise-linear edges in homogeneous-cost background. optinal paths will turn onl

at terr.dn feature ,ertces or edges (Theorem 1.2. Appendix A). Thus, if a turn in a path occurs at other than a
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vertex or edge, it must be turning based on algorithm mechanics alone. So we could check whether or not a

turn point in a path is adjacent to a terrain-feature vertex or occurs at the edge of a homogeneous-cost region.

We could define the path-generalizing function as mapping a cell to a list of the terrain-feature vertices and

edges at which its optimal path turns. We can say that a path turns at a vertex or edge if the turn cell is ad-

jacent to or the same as the vertex or edge cell.

This approach requires some additional terrain preprocessing. Since terrain in the two previous ver-

sions has been represented entirely as individual cells, some way of finding and representing terrain-feature

edges and vertices will become necessary. Such a preprocessing algorithm could group cells into terrain fea-

tures of homogeneous cost, and then fit polygons to each feat,.e. For each vertex of the polygon, it could find

the closest corresponding cell in the original representation and label it as a vertex. For each edge of the

polygon, it could find which cells most closely corresponded to it and label them as lying on that edge. Wade

[Ref. 44] presents an algorithm for doing such terrain preprocessing.

So we redefine "path list" to include only vertex and edge descriptors. To do this, turn cells are check-

ed to see if they are adjacent to a terrain-feature vertex or edge. This procedure may create a spurious bound-

ary if a path turns twice within one cell of a vertex, a case which would happen at a corner which formed a

very acute angle, for example, a river end. In this case, a spurious boundary would lie along the side of the

river segment away from the start point. We must also specify from which side a path crosses an edge, be-

cause a path may leave an area across ant edge and then reenter it across the same edge. This type of path is il-

lustrated in Figure 16b, Frame 4, starting at the cell labeled A. The path front A has a path list [A,C,D,G],

while a path front cell B has a path list [C,D,G]. When comparing cells A and C (the first cells on the-two

paths) to detemine if A and B have a boundary between them, we must be able to determine that the first path

crosses out of the high-cost area at A, while the second path crosses into the amea at C, and so the paths have

different behavior. This set of heuristics provides the ability to detect boundaries inside homogeneous-cost

areas, across rivers, and across roads. The procedures set-optimal-path.Iist and check-equivalent-paths are

listed in Table 2 with the appropriate changes.

Figure 16 shows tie above heuristics in operation. There is a very close correspondence between the

boundaries of Figure 1 6b, Frame 5. and the theoretically correct boundaries for an exact optimal-path map.

Few spurious boundaries are generated. For example, there are too many boundaries emanating from the far
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TABLE 2

WAVEFRONT-PROPAGATWON OPM ALGORITHM

CHANGES FOR VERTEX-EDGE VERSION

procedure set-optimal.path.list /* REVISED PROCEDURE */
input: Cell
I
if (Parent of Cell is on Edge; and OPL-Parent of /* include a cell in OPL for each boundary- */

Parent of Cell is not on Edgei) /* crossing episode. */
OPL-Parent of Cell := Parent of Cell;

else if (Parent of Cell is on line segment between /* SAME AS PREVIOUS VERSION */
Cell and OPL-Parent of Parent of Cell)
OPL-Parent of Cel := OPL-Parent of Parent of Cell;

else
OPL-Parent of Cell := Parent of Cell.

I /* end of optimal-path-list */

procedure check-equivalent-patlis /* REVISED PROCEDURE */
input: OPLI, the OPL-Parent of Neighbor-Cell

and OPL2, the OPL-Parent of Current-Cel
output: returns TRUE if paLks are equivalent, FALSE otherwise.
I
if(OPLI = OPL2 = [goal-point])

retumTRUE):
else

for i = I to 2
until ((first cell of OPLi is adjacent to

a cell marked "vertex") or (first cell of /* Consider only cells which are /
OPLi is marked "edgef)) /* adjacent to terrain-feature vertices */
OPLi := OP14 less first cell; /' or represent edge-crossing episodes t'

if ((first cell of OPLI = first cell of OPL2) J* Paths are equivalent if each /
or (first cell of OPLI is on the line /* pair of cells are equivalent *1

between first and second cells of OPL2)
or (first cell of OPL2 is on the line

between first and second cells of OPLI)
or ((edge = edgej) and /* NEW CONDITION */

check-equivalen(-patlts(OPL1 less rwst
cell, OPL2 less first cell))

Boundary-Flag := TRUE:
else Boundary-Flag := FALSE;

S/* end of check-equivalent-paths *
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right vertex of the high-cost area. And few bondarie, are overlooked, although some shadow boundaries do

not appear. For example, a shadow boundary should emanate from the lower right vertex of the obstacle; in

Chapter V we develop analytic chamcterizations of homogeneous-behavior boundaries and find tiat the linear

boundaries ircide-t upon vertices should act as if they were shadows with the goal actins as a point light

source, Also, the cur,'ed boundarieR on the hidden side of obstacles should be hyperbolas, and the curved boun-

daries inside homogeneous-cost areas should have monotonic curvature. From these comments, ii can be seen

that th. ooundaries generated by the vertex-edge version (as well as the other versions of wavefront propaga-

tion) have some error in location and shape, although they may suffice for mavy applications.

C. RECONSTRUCTING OPTIMAL PATIIS FROM WAVEFRONT PROPAGATION

OPTIMAL-PATH MAPS

How can we seconstruct the optimal p~rdi from the start poitit knowing the node of the optimd-path tree

which descibes its behavior? The answer depends or. what information is available in the nodes, which -iln

be differecit depending on the version vi w,...efont propagrtion, bec3use homogeneous-behavior regions are

defined differently for each version. For the pure or diverging-path version, each optimal-path-tree node rep-

resents a single cel I.Because intermnediate turn cells on the portion of a path which lies within a homogeneous-

behavior region are a result of the mechanics of thbz algorithm, and not of terrain-feature influence, a path can

be apptuxi,,ated by plotting craight lines from a shrt cell to the cell of the node representing the region in

which the start cell lies, another straght line from that cell to its parent ii, the optimal-path tree, and so on back

to the goal Thih, type , path no longer confoans to the grid-based model: otherwise, some "stair-step" ap-

proximation of the line would be required. By Theorem 1-2, in the type of terrain considered herein, paths are

straight-line segments except at terrain-feature vertices oredges. So the vertex-edge version can use the above

methed for paths from start cells to nodes representing vertices, and betwp'en vertices. Between edges, further

processing would be necessary to determine where along an edge a given path would cross using Snell's La%%

as discussed in Chapter II.
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IV. ANALYSIS OF WAVEFRONT-PROPAGATION OPM-GENERATION

ALGORITHMS

A. SOURCES OF ERROR IN WAVEFRONT-PROPAGATION OPM-GENERATION

ALGORITHMS

A problem with using wavefront propagation to generate optimal.path maps is that the inherent error of

the algorithm is carried forward to the OPM. As stated previously, Richbourg [Ref. 20 showed that an upper

bound on the errr factor of the cost of a model-optimal path generated by the point-to-point wavefront

propagation algorithm compared with the cost of the corresponding real-world optimal path is cos(9/8), or

about 7.6%. The fact that the shapes of boundaries generated by wavefront propagation are only approxima-

tionms of the correct shapes derived in Chapter V reflects the error in the shape and cost of optimal paths in-

herent in wavefront propagation.

The optdmal-path map in our pproach doe not retain information about all the intermediate cells where

each path turns, and so ,e cannot reproduce the path exactly as generated by wavefront propagation. If we

could, however, de upper bound on percent error of 7.6% would remain in effect, because nothing in the OPM

algorithms of Chapter W11 affected how the wavefront expanded from cell to cell. The backpaths of Figures 14,

15, ad 16 are all identical (compare Frame 4 of each figure), and only the boundaries differ. Although we

cannot reconstrucia pith exacidy as -generated by wavefront propagation, the straight-line approximation

method proposed In St0cdon C of Chapter 111 actually producesa path as good or better in cost than the

wavefront propagation path. Straight. line approximations of a path always go through tie region root, which

was on the original path. They also lie completely within an area of homogeneous cost, because homogeneous-

behavior regions are star-shaped with respect to the region root (Corollary 1-1.4). By the triangle inequality,

their cost is always less than or equal to die original path. So since costs of straight-line approximations are

lower bounds on costs of wavefront-generated paths, the previously stated upper bound on percent error

remains a valid upper bound. Can this upper bound be improved?

Althoughiin the case of uio.. stat cells, substantial improvement over the cost of model-optimal paths

generated by wavefront-propagation will be achieved by this path reconstruction method, the upper bound on
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error cannot be tightened in general, because there will be situations where the error in placement of a boumd-

ary would cause a start point to be placed in an incorrect region, (although without exceeding the upper bound).

An example of such a case occurs in Frame 5 of Figure 16, at the point labeled X. The optimal path from point

X should be a straight line to the goal. But since wavefront propagation caused error in the placement of the

vertical boundary (it should have been a "shadow boundary," a ray from the upper left vertex of the high-cost

area extending directly away from the goal point), X is to the right of the vertical boundary instead of to its

left, so it is associated with the region whose root is the top-leftedge of the high-cost area. Thus, a reconstructed

path will go in a straight line to the top of the high-cost area, and then cut across its comer and go the the goal.

'"his path has a cost error close to the original upper bound.

Thus the upper bound on percent error of the cost of wavefront-propagation-generated model-optimal

paths with respect to real-world optimal paths remains as stated for the point-to-point version of the algorithm,

i.e., 7.6%, although average error will be improved by appropriate reconstruction of paths from the optimal-

path map.

B. TIME COMPLEXITY OF WAVEFRONT-PROPAGATION O.PVA-GENERATION

ALGORITHMS

As stated in Chapter 11, point-to-point wavefront propagation implemented using Dijkstra's algorithm has

worst-case time complexity O(m log in), where there are m cells in the input map. In Algorithms B-I (Appen-

dix B) and Ill-I (Chapter III), however, the algorithm is modelled on the wavefront analogy, and Dijkstra's

algoritlm is not followed exactly (because cells may remain on the wavefront for more than one iteration, and

a search for the minimum-cost edge is not dine for each wavefront). As explained in Chapter II, the time com-

plexity of this version is O(c m . where c is the maximum cost of a cell in the input map, time is incremented

by I unit each step, and it is assumed that there is some upper bound on the size of c.

The mechanism for detecting boundaries is to check each cell on the wavefront against each of its eight

neighbors. There are eight. or O(constant) checks for each of the m cells in the map. Each boundary check in

the uire', ersion consists of an O(.onstant) comparison of the first turn points on the backpaths of the two cells

being checked So boundar -.L1eLk ng takes O(m) time. This is added to the time for the basic algonithm, so

67



the pure version of wavefront-propagation optimal-path-map generation has the same asymptotic worst-case

time complexity as point-to-point wavefront propagation, or 0(c in).

In the diverging-path version of wavefront-propagation optimal-path-map generation, the boundary check

consists of a comparison of the distance between the parents of the parents of the two cells. Again it is an

0(constant) operation to follow two back-pointers for each cell and compute a distance, so boundary-check-

ing takes 0(m) time, and the diverging-path version is also 0(c in).

The vertex-edge version of wavefront-propagation optimal-path-map generation uses the same path fis s

as the pure version, but considers only so-called distinguished cells on the lists. A check of the first two dis-

tinguished cells in a path list by procedure check-equivalent-paths will give a conclusive answer :bout

whether or not two paths are "similarly behaved". This check is an 0(constant) process where the first element

in each list is retrieved, and the two elements compared. So the vertex-edge version also has worst-case time

complexity 0(c m).

As discussed in Chapter III, the vertex-edge version requires preprocessing of the terrain to fit groups of

homogeneous-cost cells to polygons or line segments, and to find vertices and edges. The algorithm of Wade

and Rowe [Ref. 44] which does this has two passes. The first pass processes each cell once, in total 0(m) time.

The second pass is recursive, and a worst-case time complexity is not given, but for a map with k edge cells,

is approximately O(log k). Under the above assumptions, the number of edge cells is significantly less tham

the number of cells, so k<m. Therefore the terrain preprocessing is dominated by the wavefront propagation

algorithm.

C. SPACE COMPLEXITY OF WAVEFRONT-PROPAGATION OPM-GENERATION

ALGORITHMS

The space required for the point-to-point wavefront propagation algorithm is simply 0(m), where te

input map has m cells. Storage is usually implemented by a N by 4m array which holds cost information

and a pointer to the parent of the cell on its backpath. During execution, another data structure will hold the

coordinates of those cells currently on the waveiront. When the algonthm is expanded to deal with the two-

dimensional, or optimal-path-nap case, several nev, data structures must be added. First, for the pure and the

.ertex-edge 'ersions, tuo fields must be added to tie cell arra) to hold the coordinates of the cell's parent on
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the optimal-path list (in general not tie cell's parent on the backpath). Secondly, new data structures must be

added t, hold the output. These data structures are the DCEL and the optimal-path tree.

As explained in Chapter II, Section B, a doubly-connected edge list (DCEL) along with an optimal-path

tree are well suited to representing tie optimal-path map. The size of the optimal-path tree is proportional to

the number of homogeneous-behavior regions in the optimal-path map, since there is one node per region.

Since in the worst case there could be no more than one region per cell, the optimal-path tree will never re-

quire more than O(m) storage. In fact as discussed above, the number of regions is assumed to be significant-

ly larger than the number of cells, so the optinal-path tree will only require a small fraction of the total number

of cells in tie input map, and is more accurately a function of the number of terrain feature vertices and edges,

or O(v + e).

The DCEL represents the planar partition by listing characteristics of each line segment, or edge, in the

partition. Since each segment of the wavefront-propagation-OPM boundaries is designated as lying between

two specified cells, there can never be more than O(m) boundary segments, and in fact, the one-dimensional

nature of boundaries will tend to produce an DCEL of 0(rin) size. In terms of terrain-feature verices and

edges, it is shown in Chapter V that any given vertex or edge has a constant number of region boundaries as-

sociated with it, so the DCEL will have size of O(v + e). Note that the O(m) input map can be discarded after

preprocessing, so the amount of storage needed at run-time will be O(v + e).

In practice, a great amount of storage can be saved in the way the planar partition is represented by the

DCEL. As produced by the wavefront-propagation OPM-generation algorithm, boundaries are represented by

lists of cell edges (perhaps implemented simply by listing coordinates in the same coordinate system as the

cells. but incremented or decremented by .5). But in fact, boundaries in the grid-based domain typically con-

tain long, near-linear sequences, so the number of edges in the DCEL can be reduced greatly by representing

only endpoints of such sequences. Figure 16 shows about half of the boundaries to be linear.

D. EMPIRICAL PERFORMANCE OF WAVEFRONT-PROPAGATION OPM

.,, I'LEMENTATIONS

The three versions of the OPM-generation algorithm described in Section B of Crapter III were imple-

miated ;n Common Lisp on a Symbolics 3620 Lisp Machine. Although no special effort nas made to make
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these inplementations efficient, some idea of the relative performance of the four versions, and some rough

idea of the performance of wavefront propagation in general, can be gained by observing actual run-times.

Table 3 shows average elapsed times for two typical input maps, based on the Lisp function "get-universal-

time". These real-time figures give some rough idea of the actual performance of these implementations.
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TABLE 3

WAVEFRONT-PROPAGATION OPM-GENERATION

RELATIVE PERFORMANCE OF THREE VERSIONS

Mar) NumbLr Pure OPM D ivgnyPh VetxEr

Version Verion Verion

(average CPU Time) 449,759 cycles 793,094 cycles 2,292,827 cycles

(average Real Time) 493 sec 843 sec 2,440 sec

2

(average CPU Time) 1,558,722 cycles 916,535 cycles 2,013,910 cycles

(average Real Time) i,714 sec 973 sec 2113 sec

NOTES:

(1) Average CPU Time is elapsed time as per machine-dependent LISP function "get-internal-run-time"

averaged over eight runs.

(2) Average Real Time is elapsed time as per LISP function "get-universal-time" averaged over eight runs.

(3) Versions were implemented in Common-Lisp on a SymbolicsTm 3640 operating under Genera 4.1T.

(4) Map I was 199 by 150 cells (i.e., 29850), with one obstacle and one high-cost feature, 12 vertices and

12 edges, with 465 cells, or 1.5%, of infinite cost (obstacle cells) and 741 cells, or 2.5%, of cost two.

(5) Map 2 was 199 by 150 cells (i.e., 29850), with three obstacles, 15 vertices and 15 edges, with 619 cells,

or 2. 1%, of infinite cost.
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V. CHARACTERIZATION OF REGION BOUNDARIES

In this chapter, we formulate the geometrical groundwork necessary for an OPM construction algorithm

which relies on spatial reasoning to eliminate much of the inaccuracy inherent in the wavefront propagation

OPM construction algorithm. The algorithm applies to maps consisting of the five types of terrain defined in

Chapter 1, Section E, obstacles, roads, rivers, homogeneous-cost areas (HCA), and honogeneous-cost back-

ground. The approach we use is to determine the analytic characteristics of boundaries between regions of

similarly-behaved optimal paths as functions of terrain feature characteristics. It turns out that all boundaries

associated with the first three of the above terrain feature types (roads, rivers, and obstacles) are segments of

conic sections. Boundaries associated with HCA's are more mathematically complex, and in many cases do

not appear to have closed-form expressions. In addition to the algebraic form of these boundaries, we develop

the theory which describes the circumstances in which each type of boundary occurs. The algorithms described

in Chapter VI will rely on the results developed in this chapter for the basic steps involving construction of

each boundary.

First,primitive terrain features, that is single polygonal obstacles and homogeneous-cost areas, and single

river and road line segments, are studied and the boundaries they generate are characterized. Then a unifying

theory is intreduced which ur-- -lies all types of boundaries as they occur in terrain as defined herein. Develop-

ment of algorithms for censtructing OPM's for each of the primitive terrain features and for combined terrain

is deferred until Chapter V. Appendix C contains additional examples of optimal-path maps for each of the

primitive terrain features presinted.

A. REGION BOUNDARIES ASSOCIAITED WITH PRIMITIVE TERRAIN FEATURES

Table 4 summarizes the types of h3mogeneous-behavior-region boundaries associated with each type of

primitive terrain feature. Each type of terrain feature is listed in the left column. The second, third, fourth, and

fifth columns contain the names of the boundary types associated with that terrain feature which are linear,

parabolic, hyperbolic, and non-conic respectively. 3ince there are four cases of homogeneous-cost area (HCA)

depending on wheter the goal is inside or outside the HCA and on whether the HCA cost is higher or lower

than the surrounding tcrrain. each of which has distinctively different boundaries, these four cases are listed
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TABLE 4

SUMMARY OF HOMOGENEOUS-BEHAVIOR-REGION

BOUNDARIES BY TERRAIN TYPE

IN1EAR PARAROUC HYPERRBDUC NONQOI

Obstacle Shadow(c/c) Opposite-edge(c/c)
Obstacle-edge

River Segment Shadoiv(c/c) River-opposite-edge(c/c)
River-edge River-crossing(c/c)

Road Segment Road-edge Near-side-road- Road-end/goal(c/c)
Rd-end/road- traveliinglgoal(pfc)

tvlg(c/p) Far-side-road-
Rd-tvlgtroad- travelling/goal(p/c)

crossing(p/c)
Shadow(c/c)

High-Cost HCA-edge Opp-edge-0-thiru- Visible-edge(dld)
Exterior-Goal Hidden-edge/ iterior(c/c) Visible-hidden-
HCA nierging-path(p/p) Opp-edge-1-thru- edge(d/p)

idden-edge! interior(cld) Comner-
diverging-path(p/p) Opp-edge-2-thru cutting(c/d)

Shadow(clc) iiiterior(dld)

High-Cost HCA-edge Hiddcen-edge/goal(p/c) Exterior-opposite- Corner-cutting
lnterior-Goal Shadow Visible-ed ge/goal(p/c) edge(c/c) (cid)
HCA Hidden-edge(p/p) Visible-edge(d/d)

Interior-opposite-edgc(p/p)

Low-Cost HCA-edge Edge-followinglgoal(p/c) Veztex/goal(clc) Edge-xingl(d/c)
Exterior-Goal Vcrtex/edge-following(c/p) Oppositc-edge(d/d)
HCA Vertex-edge-crossing(c/d) Visible-edge(dld)

Low-Cost HCA-edge
Intcrior-Goal Vertex/edge-crossing(c/d)
HCA

Multiple- Shadow(cfcj River-opposite-edge(c/c)
Connected River-edge River-crossing(c/cj
River Segments Near-side-river-crossing(c/c)
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separately. Also listed with each boundary name is a coded description of what type of cost functions aie as-

sociated with the homogeneous-behavior regions on either side of the boundary. The code "c" means the cost

function of a region is conical, "p" means it is planar, and "d" means it is a "distorted cone". Terrain-featur

edges always form boundaries, which of course are linear since terrain-feature edges are linear, but are not as-

sociated with a particu!ar cost function, so no code is shown. (See Section C for a discussion ofcost functions.)

1. Obstacles

V'; begin by characterizing boundaries associated with a single obstacle in homogeneous-cost back-

ground terrain (see Theorem V-I, Appendix A). (The types of boundaries associated w.;h obstacles have pre-

viously been determined by Mitchell [Ref. 41 using differer terminology.) WiL respect to obstacles, define

a visible edge to be an edge for which no point on the cdge has an optimal-path list wuose firt element lies

on the obstacle perimeter. Define a hidden edge as a no-.visible edge, i.e., an edge for which some point on

the edge has an optimal-path list whose first elemept lies on the obstacle perimeter. In the case of terrain coi-

taining only a single obstacle, this means that both viible-edgeveitices ae visible to the goal point. in Figure

17, edges AB and BC are visible edges. Edges CD, DE, and EA ate hidden edges. (Many of Ie i'ollowing

figures are similarin formnat. Terrain features are shown as polygous orline segments. Homogeneous-behavior-

region boundaries are shown as solid curves. Occasionally continuations of the boundaries are sheown as dashed

lines to clarify the form of a boundary. In many of the figues a field of small vectors represents the initial

direction A, h" -ptimal paths from a sanpling of start points. These fields are. not par: of the optimal-path

map, but serve to illustrate the directions paths tzke and to corroborate the correctness of plottedboundaries.)

Define an opposi'e edge to be the obstacle hidden edge for which the optimal path lists of neither vertex -m-

cludes the otler. An isolated obst,,:.le has exactly ce opposite edge (tmma V-1.3, Appendix A). -dge DE

is the opposite edge in Figu-e 17. A special case is that w which .he role of the opposite edge is ,'ssumed by

an obstacle vertex- ihis is ruled out by th- , ncral position assumption discussed in Chapte; I,-although the

analysis 1o, including such a came is a simple extension of the below. Define an oppositepoint as th point on

the opposite edge with two distinct optimal paths. one through each vertex of the opposite edge.

There are fhee types of boundries 7-4sociated with obstacle:. Obasrlae edges are trivial boundprieN,

since they separate regions whose optimal-path lists are [[j,.Zal.point] front regiows with nun-dcgentrae op-

timal.path lisis (see Lcmma V-!. 1. Gbs,,2 le shadms cnm awt fromn vertices of hidden edges in % s,.aigbt
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line, as if tue goal were a point light source; each vertex of a hidden edge generates a shadow boundary. For

those vertices which join a hidden edge and a visible edge, the line segment lies on the line defined by the ver-

tex and the goal; for those vertices which join two hidden edges, the line segment lies on the line defined by

that vertex and the vertex of the hidden edge which is included in the first vertex's optimal path. (See Figure

17 and Lemma V-I.2, Appendix A).

Each obstacle also has exactly one opposite-edge boundary which emanates from the opposite edge

of an obstacle, and consist,; of teginents of hyperbolas. This follows directly from the definition of a bound-

ary by the application of basic; naJytical geometry (see Lemma V-1.4, Appendix A). The hyperbola is defined

by considering the vertices V! and V2 of the opposite edge u foci. Choosing a coordinate system such that

the x-axis intersects both foci and the origin is mid-way between them, Equation I describes the opposite-edge

boundary. Forcing constant a to be positive restricts Equation I to the one branch of the hyperbola which is

closer to the higher-cost focus. The segment of this branch which is active as a boundary begins at the point

on the opposite edge intersected by fhe branch and continues away from the obstacle. (See Figure 17).

2 2(Equation 1) x y(-2-u-P = c" where a=O(GV2l-1GVII)/2, IGV21>IGVII,

c=IVaV2W/, andb2=c -a.

If at any point the opposite-edge boundary intersects a shadow boundary, it will become defined by

another hyperbola from that point on. This zecond hyperbola is defined by considering as foci (1) the vertex

of the edge associated with the shadow boundary and which is the closer to the goal of the two vereces of that

edge, and (2) the focus of the previous hyperbola which is not aso a vertex of the edge associated with the

shadow. The hyperbolic constant is computed as before, using the costs from the foci to the goal. The segment

begin:4 at the point where the second hyperbola intersects the first hyperbola, and continues away from the

obstacle. The direction of curvature of the second hyperbola may be the same or opposite that of the first. (See

Figure 17;.

Single isolated river segments generate four types of boundaries (see Figure 18 and 'heoreni V-2,

Appendix A). Rit e,-cdgs are trfi ial boundaries (Lemma V-2.1 ). Shadoi boundaries are associated v, ilh each
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river vertex, and are half-lines starting at a river vertex and lying directly away from the goal (Lemma V-2.2).

River-crossing boundaries differentiate between paths that cross a river and ones that go around its end. A

river-crossing boundary is a segment of a hyperbola defined by considering the river vertex V an, - ,oal G

as foci, with the constant in Equation I being a = IVGI2. The segment begins at the point at which the hyper-

bola intersects the river and ends at the point at which it intersects the river-obstacle boundary (below). This

type of boundary may not appear if the river-crossing cost is too high or if the angle between the river and the

goal-to-river-end line approaches or exceeds 900. (Lemma V-2.3). A river segment will act like an obstacle

when the distance of the start point to the river plus the river-crossing cost is large compared with the distance

from the river to the goal. If this occurs, a boundary will start at the intersection of the two river-crossing boun-

daries, if they exist, or if not at the river edge. ihis opposite-edge boundary will be a hyperbola defined by the

two river-end vertices Vi and V2 as in the obstacle opposite-edge case above. (LemmaV-2.4),The rivershadow

boundaries will never intersect the opposite-edge boundary, so it will consist of only one hyperbola segment.

3. Road Segments

Single isolated road segments are associated with various types of boundaries, depending on their

orientation with respect to the goal (Theorem V-3, Appendix A). Consider a wedge with the goal G as the ver-

tex, formed by extending two rays from G through the line of the road intersecting the line at two points A and

B, so uat the interior angles GAB and GBA are the angle ^(c = L2-c, Oc the critical angle such that 0c =

sin-t (R/S), for R the road cost, and S the cross-country cost, where R is greater than S. Call this the charac-

teristic wedge of the road segment. (See Figure 19.) We adopt the convention for the following discussion that

the wedge intersection points A and B are labelled such that their relative positions on the road line are the

same as the relative positions of the two road vertices VI and V2 (e.g., if Vi is to the right of V2 on a certain

map, then A is to the right of B). When A and B and Vi are arrayed along the road line in the order B,A,V,

(irrespective of V2's position), say that the characteristic wedge is inside V1. When they are arrayed in the

order B,Vj.A or when A and V1 are the same point, say that the wedge straddles Vi. When they aie arrayed

in the order VhB,A, say that the wedge is outside V1. There are seven types of boundaries induced by ioad

segments, as listed below. When the characteristic wedge is inside Vi, types a,b,c, and d exist on she Vi end

of the road segment. When the characteristic wedge straddles Vi, types a and g exist on the Vi end. When the

characteristic wedge is outside Vi. types a,d, and f exist on the V2 end, ard vice versa. When the chiuacteri
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tic wedge is inside both Vi and V2, type e also exists on each end. When the characteristic wedge is inside V1

and straddles V2, type e exists on the VI end only. Figure 20 and Figure 21 show two example road segments

with their associated boundaries (labeled a).

Type a: Road-edge boundaries separate paths which start on one side of a road from those which start

on tie other side. All road segments will constitute road-edge boundaries (Lemma V-3.1). For example, the

road segment VIV2 in Figure 20 is a road-edge boundary.

Type b: Road-end/road-travelling boundaries separate paths which go to a road end and begin using

the road from those which go to a road interior point and begin using the road. They are linear, and form a fan-

shaped region at the road end. When the characteristic wedge is inside a road-end vertex V, there will be two

road-end/road-travelling boundaries beginning at V and forming angles of 7U2-0, and Oc-i/ti2with the

road. (Lemma V-3.2). Figure 20 shows four such boundaries (labeled b), two each emanating from road ver-

tices V i and V2, because tie characteristic wedge is inside both V 1 and V2. Figure 21 shows two road-end/road-

travelling boundaries emanating from vertex V2, because the wedge is inside V2, but none from V1 because

the wedge is outside VI.

Type c: Road-endlgoal boundaries separate paths which travel directly to the goal from paths that

travel to a road end and then along the road. These boundaries are segments of hyperbolas where road-end V

and goal G are the foci, and the hyperbola is described by Equation 1, where Vi=G and V2=V. The boundary

begins at the point where the hyperbola intersects the road-ed/road-travelling boundary. A road-end/goal

boundary exists on the goal side of the road segment for vertex Vj if and only ifa pair of road-end/road-travell-

ing boundaries exist, if the characteristic wedge is outside V2, a road-end/goal boundary will also exist on the

far side of time road segment for vertex VI. (Lemma V-3.3). In Figure 20, two such boundaries exist (labeled

c), one associated with each vertex of the road segment, and both on the goal side of the road, although the

boundary on the V2 end is not shown being off the page to the bottom. In Figure 21, two such boundaries exist

associated with V2, although both are off the page.

Type d. Ncar-side road-travelling/goal boundaries lie on the near side of the road (i.e., on the goal

sidej and separate paims which enter a road interior, travel along it, and then ext the road to cut over to t|e

goal from those %|hi .h go directly to the goal. These boundaries are described by segments of parabolas defined

for road-end verlcx Vi as follo% s. the focus of tie parabola is the goal, G, and the directrix i: ti hmw perpen-
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dicular to the characteristic wedge ray GB and which intersects the ray GB, and is a distance IGAI from A if

the characteristic wedge is inside Vi and not outside V2, and a distance IGV21 from V2 if the wedge is inside

V 1 and outside V2. This parabola is described by Equation 2, where the y-axis is the directrix and the x-axis is

the axis of the parabola.

(Equation 2) y2 = 4px where p -d cos(G.)14

for d = IGAI if wedge not outside V2,
aud d = IGVil if wedge is outside V2.

The segment of the parabola which is a boundary begins at point A if the characteristic wedge is in-

side Vi and not outside V2, and begins at point VI if the characteristic wedge is inside Vi and outside V2. It

ends at the point where the parabola intersects the near-side road-end/road-traveffing boundary and the road-

end/goal boundary if there is a road-end vertex, and continues indefinitely if there is not. It exists under the

same conditions as these two exist. (Lemma V-3.4). Figure 20 shows two near-side/road-Lavelling boundaries

(labeled d), because the wedge is inside both Vi and V2. Tie directrices Di and D. are distances IGAI from A

and IGBI from B respectively, because the wedge is inside both Vi and V2. If the wedge had straddled either

vertex, the same distances would continue to apply. Figure 21 shows one near-side/road-travelling boundary,

but this one has a directrix (not shown) with a distance IGVIl from V1 because the wedge is outside Vi.

Type e: Road-travelling/road-crossing boundaries separate paths which begin on the far side of the

road from the goal and travel along the road from those which also begin on the far side but cross the road and

go directly to the goal. This type of boundary will exist for road-end VI when the characteristic wedge is in-

side Vi mid not outside V2. It is linear (a ray), and is the portion of the characteristic wedge ray beginning at

A and lying on the far side of the road. (Lemma V-3.5). Figure 20 shows examples of two road-travelling/road-

crossing boundaries which occur because the characteristic wedge is inside both vertices. Figure 21 has no such

boundaries, because the wedge is outside V2.

Type f: Afar-side road-travelling/goal boundary occur, on thde VI end when the characteristic wedge

...i..d..V h s c.- ... -.,. r '. .--,--11 . V is ihai V ii p,,ipttcularto &' ra)

GA. but does not intersect it (i.e., D lies on the other side of G from A), and D2 is distance IV GI from V1. This

parabnla is defined similarl> to the one in Equation 2, except that d=IVIGI. One far-side road-travelling/goal
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boundary occurs in Figure 21 on the V2 end of road segment because the characteristic wedge is outside V2.

Non occurs in Figure 20, because the wedge is outside neither vertex.

Type g: A road-shadow boundary occurs when the characteristic edge straddles avertex V. It separates

points whose paths cross the road en route to the goal from those which go directly to the goal. The shadow

boundary is a ray starting at V and lying directly away from G. (Lemma V-3.7). Note that since paths which

cross roads pay no additional cost, this type of boundary occurs only by convention. We want path descriptions

to reflect each terrain-feature-edge crossing, even though no change in direction or cost rate occurs for this

case. This type is not illustrated in the accompanying figures.

4. Homogeneous-Cost Areas (HCA)

Homogeneous-cost areas (HCA) generate boundaries both inside and outside the HCA. The outside

boundaries are similar, although not identical, to those associated with obstacles, rivers, and roads. This is not

surprising, since the HCA is a generalization of each of these types of terrain. There are four cases, based on

the relative costs of the HCA interior and exterior and the location of the goal inside or outside the HCA. We

first consider the case where the cost of the interior of the HCA is greater than the cost of the exterior and the

goal point lies outside the HCA. then the high-cost, interior-goal case, the low-cost exterior-goal case, and the

!ow-cost interior-goal case.

a. High-Cost HCA With An Exterior Goal

When the goal is exterior to the homogeneous-cost area, and the cost of the HCA is greater than

the surrounding terrain, boundaries occur according to Theorem V-4, Appendix A. Define a visible edge of an

HCA to be an HCA edge for which no point on the edge [has an optimal-path list whose first element lies on

the HCA pecimeter. Define a hidden edge as a non-visible edge, i.e., an edge for which some point on tie edge

has an optimal-path list whose first element lies on the HCA perimeter. Thus a hidden edge may have points

whose optimal paths travel through the HCA, which would mean that their optimal paths would have as their

first element the visible edge across -,0ich the) pass. Define oppoitte-edge sequente as the smallest connected

sequence of hidden edges for wlidch tie first and last endpoints of the edge sequence have optimal paths whose

initial directions follo tie HCA edges in opposite (i.e., clockise versus counterclockwise) directions. If no

such empoint can be found at one end or lie other of the sequence of hidden edges, let the endpvit at that end

be the "outlcr" ,elex of the last hidden edgc. i.e.. the vertex which joins the last hidden edge in the clock%, ise
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(or counterclockwise) direction with the first visible edge in the clockwise (or counterclockwise) direction. In

Figure 22, the initial direction of optimal paths for each edge endpoint is shown as a vector. HCA I has op-

posite-edge sequence ED, HCA 2 has opposite-edge sequence EDCB, HCA 3 has opposi:e-edge sequence

FED, and HCA 4 has opposite-edge sequence JIHFE. Essentially, this definition specifies the range over which

a search must be conducted for an opposite point, if one exists, and defines the HCA vertices which may

generate opposite-edge boundaries (see below). Define the opposite point of an HCA as a point with two op-

timal paths lying in opposite directions (i.e., clockwise and counterclockwise) along HCA edges. If "shortcut-

ting" occurs through the center of HCA, the opposite point might not exist, as in HCA 2 and HCA 3 of Figure

22.

Define the critical angle Oc of an HCA as siif '(c/c2) where the ci are the unit costs inside and

outside the HCA, and ci > c2. An optimal path crossing an HCA edge will obey an analogue of Sneil's Law

in optics [Ref. 20] (see Chapter II, Section E) so that for angle of incidence 01 and angle of refraction 02,

and cost rates ci and c2 on either side of the edge, cl sin(01) = c2 sin(02). (See also Chapter II, Section

E2b(3) and Figure 11-8).

Inside a high-cost HCA with external goal, there are four types of boundaries (See Figures 23,

24, and 25). Each pair of HCA edges is potentially associated with an interior boundary. The boundary type

depends on whether the edges are visible or hidden, and are on the same or opposite sides of the opposite-tdge

boundary. A visible-edge boundary distinguishes optimal paths which go through two different visible edges;

the optimal paths cross their respective edges according to Snell's Law. Lemma V.4.1 (AppendL- A) states

the analytic form of such a boundary. Although not expressible in closed form, the boundary has much the

same shape as a hyperbola segment which forms an obstacle opposite-edge boundary, i.e, it has positive but

decreasing curvature from its point of incidence upon an HCA vertex inward into the HCA, and this curva-

ture is typically small so that the curve is almost linear. An example of a visible-edge boundary is found in

Figure 23, labeled a.

A isible-hidden-cdge boundary distinguishes optimal paths going through a visible edge from

those going through a hidden edge; the latter paths traverse the HCA edge at exactly the critical angle and the

follow the edge. Lemma V-.4.2 states the analytic fomi of this type of boundary, which again is similar to a

hyperbola. Examples of this type of boundary occur in Figures 23, 24, -ud 25 and are labeled b.
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A hidden-edge merging-path boundry distinguishes optimal paths leaving the HCA at two dif-

ferent hidden edges at exactly the critical angle, and for which all paths merge before the goal. A way to check

for thi behavior is to see if an optimal path from a vertex of one of the edges includes a vertex of the other

edge. Lemma V-4.3 states the analytic form of this type of boundary, which is a line segment. The boundaries

labeled c in Figures 23, 24, and 25 are hidden-edge merging-path boundaries. A hidden-edge diverging-path

boundaty is like the preceding except the two classes of paths merge only at the goal. ihis type of boundary

is also a line segment, as stated in Lemma V-4.4. Examples of this type of boundary occur in Figures 24 and

25 and are labeled d.

Each pair of adjacent edges is always associated with one of the above interior boundaries, while

non-adjacent edges may or may not be. If shortcutting does not occur across an HCA corner, a boundary will

start at the vertex at that corner. If shortcutting does occur, the boundary associated with that vertex will in-

tersect the HCA edge at the point where shortcutting starts (see Figure 23 where two of the boundaries labeled

b intersect the opposite edge, Figure 24 where one of the boundaries labeled b intersects the lower right edge

of the HCA, and Lemma V-4.5). From the vertex orshortcutting point at which such a boundary begins, it will

continue into the HCA interior until it intersects another boundary or HCA edge. At the point at which two

such boundaries first intersect they will terminate, and a third boundary will begin which represents the division

-'-,en the two regions which the first two boundaries did net have in common. For example, in Figure 23

the boundary as.ociated with vertex V! distinguishes paths which cross edge VIV2 from those which travel

along edge VIVs, while the boundary associated with vertex V5 distinguishes those which travel along edge

VV5 from those which travel along edge V4V5 passing through vertex V5. These two boundaries begin at

their respective vertices and intersect in the HCA interior, and from that point a third boundary begins which

distinguishes paths which cross edge VIV2 from those which travel along edge V4Vs passing through vertex

Vs. These two descriptions ("crossing VIV 2" and "travelling along V4V5 through Vs") represent the two

regions wich the initial boundaries did not have in common, so they characterize the tird boundary. Boun-

daries will continue to intersect and new ones begin in the HCA interior until de boundary associated with

each vicible vertex is joined with one or more hidden vertices or HCA edges (Lemmits V-4.10 a V-4.1 1).

These networks of boundaries can be represented as trees, where each boundary is considered a node, and

edges connect nodes whose boundaries intersect (see Lemma V-4.10). Such a tree, called an interior.bound.
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ary tree, has interior nodes with exactly two children, while the root of such a tree can have zero, two, or four

children. A tree whose root and sole node has zero chlidren represents a boundary which goes from one edge -

of ile HCA to another without intersecting any other boundaries, such b' " n d.-t:y ;va=41 .ine from ver-

tex V2 in Figure 23. A boundary separates two regions, and rfiy time two boundaries intersect it must be, as

explained above, that they have one of the two regions in common. Beyond the point of intersection, the two

regions they did not have in common mus, in separated by a boundary. Thus each time two boundaries inter-

sect, a third must begin. We choose as leaf nodes those boundaries associated with HCA vertices, because one

of these boundaries is guaranteed to exist for each vertex, and no other interior boundaries intersect it at the

vertex or edge, so we can be sure that they will have no children. At the other end of such a boundary it either

intersects an HCA edge, meaning its node is a root without children as described above, or it intersects two

other boundaries, one of which will also be associated with an HCA vertex and so be another leaf node. If the

latter is true, the boundary beginnning at the intersection point of the two leaf- node boundaries will serve as

the parent node of the two boundaries. This merging of boundaries will continue until the parent node's bound-

ary intersects an HCA edge, in which case the node is the tree's root, or until roots of two boundary trees are

found to represent the same boundary, in which case the two trees can be merged into one. This is the case

where a root will have four children, representing the two boundaries which intersect each end of the root's

boundary. Several examples and illustrations of the construction of such interior-boundary trees are given in

Chapter VI.

Outside the HCA, there are four types of boundaries Again, HCA edges are trivial boundaries

(Lemma V-4.5).HCAshadowsare defined exactly as for obstacles (LemmaV-4.6). Examples of HCA shadow

boundaries are labeled e in Figures 23, 24, and 25. The other two types are JICA opposite-edge boundaries

and tlCA cornercuting boundaries. HCA opposite-edge boundaries are the generalization of obstacle op-

posite-cdge boundaries, and differentiate between paths which start outside the HCA and go through or around

the HCA in different directions. There are three types of opposite-edge boundaries, depending on whether

neither, one, or both optimal paths go through an HCA edge. A path which does not go through tie HCA goes

around it initially via one of is vertices. The case where neither path goes through the HCA is the same as the

obstacle opposite-edge boundary case, atd is described by connected hyperbola segments.The first and secowd

cases havc iwiorc complicated analytic lonns, although the shape of the boundaries is very similar to hyper-
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bolas. (Lemma V-4.7). In Figures 23, 24, and 25, opposite-edge boundaries ae labeled f. In Figures 23 and

24 all three cases occur, while in Figure 25 the HCA is a virtual obstacle, that is, it appears to points outside

it that it is an obstacle, so the only opposite-edge boundary it has is the third, or hyperbolic case.

HCA Comer-cutting boundaries occur when optimal pathr cut into the HCA along an edge which

is not part of the opposite-edge sequence. In fact, the analytic form of this boundary is just a variation of the

second of the three types of opposite-edge boundaries discussed in the previous paragraph. Corner-cutting

boundaries emanate from a vertex connecting a hidden and a visible edge when shortcutting occurs across

those edges (for example, in Figure 24, labeled g). In the generalization of this case where the edges across

which shortcutting occurs are separated by one or more edges, the comer-cutting boundary begins at the point

at which the set of interior boundaries intersects the hidden ee,'1e (Lemma V-4.8).

The construction of interior-boundary trees is useful in finding exterior boundaries. There is ex-

actly one opposite-edge or corner-cutting boundary associated with each interior tree of boundaries, and each

visible HCA vertex is connected, eith.r directly or via its interior boundary tree, to an opposite-edge or corner-

cutting boundary. (Lemma V-4. I1). When an interior boundary tree includes as a leaf node an interior hidden-

edge-diverging-path bouedary, the point at which the boundary intersects the HCA edge is connected with a'l

exterior opposite-edge boundary. When an imterior-boundaty tree includes as a leaf node a point of intersec-

tion of an interior boundary and an HCA edge, but does not include an opposite point, for example, as hap-

pens three times along the hidden edge of the HCA in Figure 23, this point of intersection is connected with

xn exterior opposite-edge or corner-cutting boundary. When as happens to the rightmost vertex in Figure 24,

a vertex is not connected with any interior boundary tree, comershortcutting occurs and a corner-cutting bound-

ary is connected with the comervertex. Two HCA opposite-edge boundaries orcomer-cutting boundaries may

intersect each other or a shadow boundary, and if they do a third boundary begins at the point of intersection

and lies away from the goal, as in the case of obstacle opposite-edges.

An optimal path will travel into a high-cost HCA from outside it only across an edge which forms

an angle greater than sin '(20c) with another connected HCA edge (Ref. 20]. If none of the hidden edges are

associated with included angles of less than 2ec with r.,,tected visible edges and the cost ratio and dimen-

sions of the HCA allow, it acts exactly as an obstacle with respect to all start-points outside the HCA. Such an

HCA is called a rtial obstacle. Tie HCA shown in Figure 25 is a virtual obstacle. If all the opposite-edge
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and corner-cutting boundaries converge and beceme a single opposite-edge boundary away from the goal, the

HCA becomes, for all points beyond the point of convergence, a virtual obstacle.

b. High.Cost FCA With An Interior Goal

An HCA containing the goal point and with higher cost than the surrounding terrain generates a

set ofexterior boundaries similar to the high-cost exterior-goal case, while the interior boundaries are reminis-

cent of road boundaries. The similarity to road boundaries arises because for start-points inside the HCA, it

may be profitable to move away from the goal point initially in order to travel along an HCA edge in the ex-

terior, lower-cost region, just as if there were a road segment along the HCA edge. Figure 26 illustrates the

high-cost interior-goal case (see Theorem V-5).

We will define edges for this case with respect to each of its vertices, so that an edge may he

defined differently for each of its endpoints. Define a visible edge with respect to one of its vertices V as an

edge for which the optimal path from V cuts into the HCA interior at some point along the edge (either im-

mediately from V or along the edge interior). Define a hidden edge with respect to V as an edge for which the

optimal path from V starts along the other edge incident to V, or for which no optimal path from any point on

the edge cuts directly into the HCA interior. Define an opposite edge as an edge which is a hidden edge with

respect to both its vertices. There are four types of interior boundaries, which are line segments and parabola

segments. Each HCA vertex can generate a set of boundaries. For each vertex V, if the optimal-path from that

vertex consists only of the goal point, i.e, if the optimal path from the vertex goes directly to the goal, then

there are no interior boundaries associated with that vertex.

If on the other hand the optimal path from HCA vertex V travels initially along ur: HCA edge,

call the edge along which the path travels initially E2, and call the other HCA edge incident upon V (along

which the path does not travel) El. In this case there will be a boundary associated with vertex V which is a

line segment. This boundary starts at V and separates paths which cut over to edge El and go through V from

those which cut over to edge E2, bypassing V. This is a hidden-edge boundary as defined for the exterior-goal

case above. (In Figure 26, boundaries label!ed a are hidden-edge boundaries. Also see Lemma V-5.1 in Ap-

pendix A). In this case there will also be a parabolic boundary called a hidden-edgelgoal boundary, which

separates optimal paths which go directly to the goal from those which go initially away from the goal to edge

Et and from there throigh V and on around the HCA, cutting back in to the goal at another point on the HCA
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perimeter. This parabola is formed by considering the goal point as the focus, and constructing the directrix

such that it is perpendicular to a line from V into the HCA exterior which forms an angle of it2 + Oc with

edge El , and such that it is a distance d from V where d = cost(optimal path from V)/c i, where c i = exterior

cost. (See the boundaries in Figure 26 labeled b, and Lemma V-5.2, Appendix A.)

If in addition, the first turn point P on the optimal path from V is an interior point of edge E2,

i.e., if the second leg of the optimal path from V cuts into the ICA to the goal, there will be a boundary called

a visible-edgelgoal boundary associated with V and edge E2 which separates paths that go directly to the goal

from those which go initially back to E2 then travel along E2 to P, and then cut into the HCA at P to the goal.

The visible-edge/goal boundary intersects the HCA edge at P. Again, the focus is the goal point, and in this

case the directrix is perpendicular to a line from P into the HCA exterior which forms an angle with line seg-

ment PV of 7/2 + Oc, and which is distance d from P such that d = cost(OPL(P))/c i. (See Figure 26, the boun-

daries labeled c, and Lemma V-5.3.)

The other type of interior boundary occurs when two adjacent vertices on a hidden edge have

optimal paths which both lie initially on an HCA edge, but which go in opposite directions around the HCA

(i.e., for which neither optimal path includes the other vertex). This is the same situation that occurs in the

definition of an obstacle opposite-edge, and so such an edge is called an HCA opposite edge. However, there

may be zero, one, or more opposite edges in this case. Each HCA opposite edge VIV2 generates an interior

opposite-edge boundary, which separates paths which exit the HCA and go through vertex Vi from those

which exit and go through vertex V2. (S-e Figure 26, the boundary labeled c, and Lemma V-5.4.)

The exterior boundaries in this case are quite similar to the high-cost exterior-goal HCA case.

There re five types of exterior boundaries. I1CA edges are trivial boundaries (Lemma V-5.5). Shadow boun-

daries are associated with each vertex V whose optimal path OPL(V) includes as its first path-vertex a point

P on the HCA perimeter. The shadow boundary is constructed by extending a ray from V along line VP away

from P. (See Figure 26, boundaries labeled e, and Lenmma V-5.6.)

Opposite-fdge boundaries emanate from each HCA opposite edge. An opposite-edge boundary

begins at an opposite point with a hyperbola segment and extends outward from. the HCA, being formed ex-

actly as in the exterior-goal case. Since there may be more than one opposite edge, there may also be more

than one opposite-edge boundary. (See Figure 26, boundaries labeled f and Lemma V-5.7.) Visible-edge boun-
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daries separate paths which cross two edges en route to the goal. This type of boundary exists whenever an

optimal path from an HCA vertex goes directly to the goal. The boundary starts at the vertex and lies outward,

possibly terminating when it intersects the next kind of boundary. (See boundary labeled g in Figure 26, and

Lemma V-5.8.) Corner-cutting boundaries emanate from points at which hidden-edge/goal boundaries from

the interior intersect te HCA edge. They separate points whose optimal paths cross the edge from those which

go around the edge vertex. These boundaries begin at the HCA edge and are concatenated with new curve seg-

ments at each point at which the earlier curve intersects a shadow boundary, as in the comer-cutting case above.

(See boundaries labeled i in Figure 26, and Lemma V-5.9.)

c. Low-Cost HCA With An Interior Goal

Analysis of an HCA with lower cost than the surrounding terrain, where the goal is in the HCA

interior, shows a much simpler set of boundaries (Theorem V-6). There will never be any boundaries inside

the UCA in this case, because there is no incentive for an optimal path to move away from the goal to the high-

cost, external terrain, and there are no terrain-feature edges or vertices between any point in the HCA and the

goal, since our HCA's are assumed convex. (See Lemma V-6.I, Appendix A.) External boundaries will occur

in pairs, forming a wedge emanating from each vertex of the HCA, much as in the case of road-end/road travell-

ing boundaries for a road segment. The external boundaries are all rays which begin at an HCA vertex and L.

away from the goal, and can be constructed by tracing apath from the goal to the vertex, and then employing

Snell's Law for the path with respect to each of the edges incident to the vertex to determine the orientation

of the two boundaries. Call this type of boundary a vertexiedge-crossing boundary (see Lemma V-6.2). Figure

27 shows a low-cost HCA with izterior goal, and the boundaries it induces on the plane.

'. Low-Cost HCA With An Exterior Goal

The final case, where the cost inside the HCA is lower than the surrounding terrain and the goal

is outside the HCA, bears some similarities to the low-cost, interior-goal case and some to the high-cost, inte-

rior-goal case. In this case, parabolic and similar boundaries occur outside the HCA, treating HCA edges as

if they were roads, and the wedges which occur in the low-cost, interior-goal case are present in this case as

well. Only one type of boundary occurs in the HCA interior, and seven types occur in he HCA exterior

(Theorem V-7). Figure 28 illustrates a typical 3ow-cost, exterior-goal HCA.
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In the exterior, in addition to the trivial edge- boundaries (Lemma V-7.1), boundaries can be con-

structed by cosidering the behavior of the optimal path front each of the HCA vertices. For each vertex V of.

the HCA, let El and E2 be the edges incident upon V, while V1 and V2 are the vertices such that W = El

and VV2 = E2. Additionally, let vertex Vt be closer to the goal than vertex V2, i.e., the cost of the optimal

path from Vt be less than the cost of the optimal path from V2.

If the optimal path -tom V goes initially along HCA edge El, (note that it will not go along E2

because of the naming convention above), the paths treat the edge somewhat as if it were a road. Let P be the

first point on the optimal path from V, which will be the point at which the path exits the HCA interior toward

the goal. A verterledge-following boundary and a veriexledge-crossing boundary are associated with from V

with respect to edges Et and E2 respectively. The vertex/edge-crossing boundary is a ray with vertex V lying

in 'he HCA exterior such that the ray and the first leg of the optimal path from V form a Snell's-Law crossing

of HCA edge E2 (see Lemma V-7.2). This type of boundary separates paths which go to vertex V md then

along edge El from those that go directly to Et and fc;ow along it. The vertex/edge-following boundary is a

special case of the vertex/edge-crossing boundary where the Snell's-Law angle of the ray with edge El is the

critical angle Oc (see Lemma V-7.3). These boundaries are labeled I in Figure 28. The vertex/edge-crossing

boundary separates paths which go to a vertex V and then cut into the HCA interior from those that cross edge

El into the interior. In Figure 28, these boundaries are labeled 2.

Also occurring is an edge-foilowing/goal boundary which is a parabola with the goal point as

focus and directrix perpendicular to a line from P at an angle 7r/2 + Oc, lying adistance d away from P where

d is the cost of an optimal path from P. This type of boundary separates paths which go to edge Et and follow

the edge fron those which go directly to the goal. (See Lemma V-7.4) Figure 28 has these type of boundaries

labeled 4. Additionally, a vertex/goal boundary occurs which is sinilar to te road-end/goal botindary of the

road segment case. This boundary begins at the point at which the edge-following/oal boundary intersects-

the vertex/edge-following boundary, Ad is a hyperbola segment with V and G being the foci, and the hyper-

bolic constmt being the cost of the optimal path front V (see Lemma V-7.5). Figure 28 labels this type of

boundary 3. This boundary may continue indefinitely, or it may intersect the vertex/edge-crossing boundary

emanating from V. If these two intersect, both terminate at the point of intersection and a third boundary dis-

cussed below begins.
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For each HCA vertex V for which the optimal path from V goes initially into the HCA interior,

a pair of linear vertex/edge-crossing boundaries will occur, just as in the interior-goal, low-cost case. These

boundaries separate points whose optimal paths enter the HCA through a hidden vertex from those which enter

through a hidden edge. Each boundary is constructed by extending a ray from V into the HCA exterior such

that the ray and the first leg of the optimal path from V form a Snell's-Law crossing of Et and E2 respective-

ly. If in addition the vertex/goal bmundary associated with vertex V i intersects the vertex/edge-crossing bound-

ary emanating from Vi associated with edge E, a third boundary begins. If the first point P along the optimal

path from V is an HCA vertex, the boundary will be an edge-following/goal boundary, aparabola, as discussed

above. If P is an inieriorpoint of an HCA edge, the boundary will a more general type of curve similar in shape

to a parabola. called an edge-crossinglgoal boundary (see Lemma V/-7.6) In Figure 28, these type of boun-

daries are labeled 5. A vertex/goal boundary also occurs, beginning at the point at which the edge-crossing/goal

boundary intersects the vertex/edge-crossing (or edge-following) boundary associated with edge Et .

Whenever an interior boundary (see below) intersects a hidden edge of the HCA, an exterior boundary begins,

called an opposite-edge boundary (see Lemma V-7.8 and Figure 28 boundary labeled 7). Opposite-edge boun-

daries separate paths wich cross an edge into the HCA interior and then go across the HCA to exit across a

second, visible edge, from those which cross the same first edge into the HCA but exit across a third, visible

edge. Just as in the high-cost, exteior-goal case, these boundaries may intersect and new opposite-edge boun-

daries begin, but in this case they are of only one type and separate paths which coss one pair of edges from

those which cross another pair.

There is only one type of boundary in the interior of a low-cost, exterior-goal HCA. It begins at

a visible vertex which is not directly connected to any other boundaries, and separates points whose optimal

path-. cross one visible edge incident to the vertex from those which cross the other visible edge. Because of

its similar boundary type in the high-cost exterdo.-goal case, it is called a visible-edge boundary (see Lemma

V-7.7 and the boundary labeled 6 in Figuir 28). Just as in that case, the interior boundaries may intersect and

generate new boundaries, which are als. isible-edge boundaries. Whenever a visible-edge boundary inter-

sects a hidden edge, the visible-edge boundary teminates and an opposite-edge bouoviry begins in the HCA

exterior. Both th visible-edge bounda. and the opposite-edge boundary types are similar in shape to hyper-
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bola segments, although their algebraic form is not expressible in closed form. These boundaries typically

have very little curvature.

B. A UNIFYING VIEW OF REGION BOUNDARtIES

The boundaries associated with each terrain feature and the homogeneous-behavior regions they separate

can be viewed in a more unified mainer. This view will provide the basis for a key step in the algorithm

presented in Chapter VI which merges optimal-path maps for isolated terrain features into consolidated op-

tim'al-path maps.

1. Cost Functions of Regions With Respect to Region Roots

The cost of optimal paths from each start point in the plane is a function of the location of the start

point. In other words, there is a cost function of X and Y which characterizes the entire map. Consider the

region in the vicinity of the goal, for which the goal is the region root. Cost is proportional to distance from

tie goal, in tie absence of intervening terrain, so iso-cost contours fomi circles about the goal. This cost func-

tion is an inverted cone with vertex at the goal-point, or the upperhalfof a cone as defined in classical geometry.

In any homogeneous-behavior region with a point as its root, there will be some additional cost of the optimal

path from the root to the goal. For each region whose root is a single point then, the cost function in the region

will be conical with respect to a vertical axis through the point. The vertex of the cone representing the cost

function will be sifted upward on the cost axis by the amount of the cost of an optinal path from the root.

Another type of region root is an edge along which paths travel en route to the goal, for example, a

road segment (see Figure 29). In the discussion above regarding road segments, it was noted that the path fron

a point whose optimal path enters a road to travel along it does so at the critical angle 0c = sin'I(C1/Cb),

where Cr is the cost of travelling a unit distance by road and Cb is the cost of travelling a unit distance in back-

ground terrain. Also, therefore, the cost of travelling from the point of entrance onto the road P: to the point

of exit from the road Px is Cr.IPgPxl = Cbsin(0c)'lPEPxl.

The cost of travelling from point S to the road and along the road to the point ofexit Px is then ISPFICb

+ IPcPxtCbsin(0c) = CbgISPrJ + IP-Vxlsin( 0G)). Consider a right triangle with hypotenuse P3PX, with one leg

a continuation of SPr to the other side of the road fronm S to point Q. Now IPcgQI = 1PEPxlsin(0b), so the cost

oftravelling front S to Pc and along the road to Px is Cb(ISPII + IPI:QI) = CbISQI since S. P, ,and Q are colinear.
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Thus, the cost from any point S to move to a road and travel along it to some point Px is proportional to the

distance from S to a line at angle Oc with the road and passing through Px. But by this description, S describes

a plane which intersects line QPx lying in the plane of the map, such that the slope of the plane in the gradient

direction is Cb0SQI/lSQ = Cb. So the cost function associated with a length-wise-travelled edge is a plane.

A third type of region root is an edge which paths cross, obeying Snell's Law as they do so. As each

path crosses the edge. it enters a region where the cost function becomes proportionally greater or less than

before. But each edge which is crossed according to Snell's Law performs a transformation on the current cost

function, or intuitively speaking, distorts the cost function. The cost function associated with a Snell's-Law

edge is therefore a distortion of the cost function associated with the parent of the edge in the optimal-path

tree. Thus there are two cost functions associated with Snell's-Law edges, one where the cone of a point-type

root is transformed by the edge resulting in a distorted cone, and one where the plane of a road-type root is

transformed by the edge, resulting in a plane. For regions with conical cost functions, paths which crossed into

it from a region with a lower cost would have a cost fu,-ction which was a flattened "cone". Paths crossing into

it from a region with a higher cost would have a cost function which was a "cone" with greater curvature. For

regions with planar cost functions, higher-cost adjacent regions would have a more sloped cost function, while

lower-cost adjacent regions would have a less sloped cost function.

There are any number of"higher-order" cost functions associated with Snell's-Law edges ending in

a point. For example, paths could cross three edges enroute to a point. So it does not appear to be possible t0

derive a finite number of analytic characterizations of cost runctions for all varieties of Snell's-Law edges.

Note. however, that although a cost function may be transformed by any number of Snell's-Law edges, it has

i's basis in either a point or a linearly-traversed edge root, so there are really only two general classifications

of Snell's-Law cost functions, those for n crossings rooted in a point, and those for n crossings rooted in a

linearly-traversed edge. Once a sequence of region roots leads back to a point or a traversed edge, a fixed cost

is associated with the point or the goal end of the edge, which is the cost from that point to the goal, and so no

other previous information about cost functions remains r.levant.

A river edge can also be a region root. However, since a river edge only adds a fixed amount to the

cost of paths u~hich cross it, it serves only to shift vertically by a fixed amount whatever cost functon occurs

in ti region on its near side. and so cannot be said to have a characteristic cost function of its own. The final
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type of region root is the degenerate one, the null list, adopted by convention to represent regions which have

no feasible paths, for example, obstacle interiors. Since the cost of a path in the degenerate region is infinity,

the. cost function will be considered undefined.

Since these are the only types of region roots which occur in the terrain defined for this research,

there are only thre general types of cost functions: cones,plaaes, and various orders of distorted cones, depend-

ing respectively on whether the region has a point as its root, a linearly-traversed-edge or one ormore Snell's-

Law edges ending in a linearly-traversed edge as its root, or finally a Snell's-Law edge as its root leading to

one or more Snell's-Law edges and a point.

2. Boundaries Between Regions as Intersections of Cost Functions

The occurrence of many of the simplertypes of boundaries can now be e.plained in terms of the cost

functions of the region roots for regions which the boundary separates. Since at a boundary between two

regions, the cost function for both regions applies, it must be that the boundary is the projection on the XY

plane of the intersection of the two cost functions. The intersection of two cones with parallel axes is, accord-

ing to basic analytic geometry, a hyperbola, and so it becomes clear why the boundary between two regions

with points as roots is always a hyperbola.

The boundary between a region whose root is a point and a egion whose root is a road-segment was

determined in Section A3 above to be a parabola. Since the slope of the plane which is the cost function of the

road-segment's region was shown above to be the cost rate of the background, and the slope of the cone is also

the cost rate of the background, we have the condition which specifies in intersecting a plane with a cone that

the intersection is a parabola.

The intersection of two planes is a line, so the boundary between regions which both have linearly-

traversed edges as roots is a line segment. For example, the hidden-edge merging-path boundary of a high-

cost, external-goal HCA is such a boundary, and as shown in Section A4a above is indeed a line segment.

The more complicated boundaries involving one or more Snell's-Law edges ending in a point also

are consistent with this view, although the mathematics involved in computing the intersections of general-

ized shapes is complex. Boundauies involving Snell's-Law edges ending in a linearly-traversed edge are of the

same types as those involving single linearly-traversed edges. Since there are lee general types of cost func-

tions, and each boundary can be described as the intersection of two cost functions, there are six non-redun-
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dant ways that two cost functions may intersect, as in Table 5. Each entry in the last row and the last column

depends on the. number of edges crossed by the region root, and will be different for different numbers of

edges. For some cases, a boundary listed as a parabola, hyperbola, or distorted parabola or hyperbola will

degenerate to a straight line.

A view which takes into account the nature of the cost functions associated with regions which are

separated by boundaries leads to a more unified approach to the derivation of the analytical forms of the boun-

daries. This view will become important in the process of merging several single-feature optimal-path maps

discussed in Chapter VI. since there will be too many possible cases of region intersections to derive each

analytical form case by case. The above six-forms will provide the basis for a general solution to the problem

of merging OPM's.
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TABLE 5

BOUNDARY TYPES BY REGION ROOT PAIRS

Region Root Type (cost function typet

linearly-traversed edge I-SLjd&iP
(cone) (plane) (distorted cone)

Paimt hyperbola parabola distorted
(cone) hyperbola

linearly-traversed edge parabola line distorted
(plane) parabola

SL.dgcjop~t distorted distorted distorted
(distorted cone) hyperbola parabola hyperbola
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VI. ALGORITHMS FOR OPM CONSTRUCTION BASED ON SPATIAL

REASONING

A. OPTIMAL-PATH TREE CONSTRUCTION

The fist step in constructing an optimal-path map is to build an optimal-path tree (OPT). A straightfor-

ward way to do this is presented here, although a more efficient way would be to build the OPT during the ex-

ecution of an algorithm such as recursive-wedge decomposition or the continuous-Dijkstra algorithm: A set

of optimal paths from the goal point to each terrain-feature vertex is computed using any point-to-point path-

planning algorithm. The turn points of th'.se optimal paths are then sequentially inserted into the OPT by scan-

ning each path list from the goal point to its start point as the OPT is traversed from its root (the goal) through

its internal nodes, matching nodes of the tree with turn points of !he path.

As the insertion algorithm traverses the OPT, a pointer identifies the current node. A pointer also iden-

tifies the current element of the path list. If the current node has a child node which matches the current ele-

ment of the path li~t, the child node becomes the current node and the next element on the path list becomes

the current one. If the current node has no child node which matches the current path-list elemen, a new node

is created which matches the path-ist element and whose parent is the current node. Then as t-efore, the child

node becomes the current node and the next path-list element becomes the current one. When the end of the

path list is reached, the insertion is complete. When all the terrain-feature-vertex optimal paths have been in-

serted into the OPT, one final node representing the empty path list (for "start" points with no feasible paths,

as for example in the middle of an obstacle) is inserted as a child of the root node and the initial OPT is com-

plete.

B. BASIC ALGORITHMS FOR ISOLATED TERRAIN FEATURES

first, we present algorithms to construct planar partitions for four types of isolated single terrain features,

An algorithm is presented for obstacle, river segment. and road segment primitives, and for each of the four

cases -,.ssociatcd with honiogeieous-cost areas (HCA).
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1. An Algorithm for OPM Construction for A Single Obstacle

For a single obstacle in a homogeneous-cost background (see Figure 17), the algoritun to construct

the optimal-path map with respect to a certain goal point, given the optimal-path tree, is straightforward. The

OPT for a single obstacle will have three branches from the root, one of which will consist only of the empty

node. Each of the other two branches will consist of one chain of nodes representing vertices on one side or

the other of the obstacle. The algorithm begins by taking the obstacle edges as the starting set of hoinogeneous-

behavior boundaries. Then it constructs all the shadow boundaries by traversing down the two branches of the

optimal-path tree whose nodes represent vertices on opposite sides of the obstacle, creating a shadow bound-

ary for each edge of the tree until it finds the leaf node of each branch. Then it constructs the opposite-edge

boundary starting with the hyperbola generated by the two vertices of the opposite edge and sweeping away

from the goal. Each time the current segment of the opposite-edge boundary intersects a shadow boundary, a

new pair of foci is determined, and the new hyperbola segment is constructed. The algorithm is finished when

the opposite-edge boundary does not intersect any more shadow boundaries.

Table 6 (on two pages) shows the algorithm for construction of a single obstacle OPM. Algorithms

are presented using standard procedural conventions as in Chapter RI, with natural-language explanations sub-

stituting for rigorous aotation where possible without ambiguity. The input to each algorithm is a representation

of the terrain feature and an optimal-path tree, representing the optimal paths from each terrain-feature ver-

tex. The doubly-connected-edge-Iist (DCEL) data structure presented in Chapter II, Section A is used to rep-

resent the planar partition. We assume that low-level algorithms are available to manipulate the DCEL, for

exanple, insert-into-dcel. Assume also that specifying an optimal-path tree node is equivalent to specifying

the coordinates of the vertex represented by it, as well as the cost of the optimal path from the vertex to the

go-l.

The procedure add-obstacle-opposite-eo'g.-bdryis called by the algorithm to construct the opposite-

edge boundary as it lies outward from the obstacle. It does this by finding, if ihey exist, points of intersection

with the shadow boundaries from the two vertices which serve as the foci of the hyperbola which is the active

portion of the opposite-edge boundary, and choosing the one which occurs closest to the obstacle. Both the

shadow boundary and the hyperbola are truncated at this point, and new foci and a new hyperbola are deter-

mincd. This hyperbola becomes the active portion of he opposite-edge boundary, ,and new shadow boundaries

108



TABLE 6

OBSTACLE OPM ALGORITHM

algorithm single-obstacle-opm: (Algorilthn VI.1)
input: Optimal-Path Tree with root node N

and associated obstacle edge-list 0;
output: Optimal-Path Map M (a DCEL)

and modified Optimal-Path Tree N;
purpose: to construct an OPM for a single obstacle;
I
M := empty dcel structure;
while (0 is not empty) /* insert obstacle edges into DCEL. '/

I
insert-into.dcel(M,First edge of 0).
0 := 0 less first edge of 0;

Nprev := N; /* initialize Nprev to Goal. */j := 1;

for each child-node of N /* construct shadow boundaries. */

Ncurr:= child-node(N):
if Ncurr has a child node /* ie, if node is not a leaf node. */

I
until Ncurr has no child nodes /* ie, if node is a region root. */

I /* traverse to bottom of this branch. '/
Nrev := Ncurr;
Bdry := Line NcurrNprev /4 ie, ray starting at Ncutr and '/

less ray NcuirrNpmv ; /* lying away from * ,
insert.iWto-dcd(M,Bdry); /* add shadow boundary to DCEL. *

* I
Oppositc-edge-vertexj := Ncurr. /*' note: there are exactly two such vertices. */
j:=j + 1;

forj := I to 2
1
Focusj := Opposite-edge-vertexj;
Costj := cost of optimal path from

Opposite-edge-vertexj;

add-obst-opp-edge-bdry /* construct opp-edge bdry. */
(Focus ,Cost iFocus2,Cost2,M,N);

} /* end of single-obstacle-opm Algorithm */
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TABLE 6 (CONTINUED)

OBSTACLE OPM ALGORITHM

procedure add-obstacde-opposite-edge-bounuiary
input: coordinates and optimal costs front opposite-edge

vertices, shadow bdrys represented in DCEL M, and optimal-path tree N;
output: revised DCEL M;
purpose: to build the opposite-edge bdry by concatenating successive hyperbola segments;

Ihddy =hdwbz rmVrej
Shadildiy2 := shadow bdry from Vertex2;

repeat until neither shadow boundary intersects the hyperbola;

Bdry := segment of hyperbola branch such that I'* initialize Bdry to initial leg starting at *
Focus i := Vertexi, Focus2 := Vertex--, I'* obstacle opposite-edge. ~
hyperbolic constant := abs(Cost i- Cost2),
and segment lies away from goal;

Intersect I := point of intersection of Bdfy
with shadow bdiy from Focusi;

Jntersect2: point of intersection of Bdry
with shadow bdzy from Focus2;

if at least one shadow bdry intersecs Bdry

j:= j which minimizes length fromn the be gg
of Bdry to lntersectj-;

Bdiy := portion of Edry between its beginning
and Intersectj;

isisert-into-tce(M,Bdry); /* add cuirent segment of opp-e. bdiy to DCEL. *
Edry := segment of hyperbola branch starting /* get next segment of opposite-edge bdry. *

at Intersectj such that Focusj := parent-node(Focusj),
%Costj = Cost of Focusi, hyperbolic constant
:abs(Cost i- COSt2), and segment lies away from goal;

ShadB dry1 := shadow bdry from Vertej; /* substitute new shadow bdry from new focus. *

else insert-into-dcel(M,Bdry); P add last segment of opp-edge bdry to DCEL *

1* end of add-obstade-opp-edge-boundary *
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are checked for intersections. When no intersections are found, the procedure is finished and the opposite-edge

boundary is the concatenation of all the hyperbola segments.

The algorithm of Mitchel [Ref. 41 also builds an optimal-path map for an obstacle. It allows for mul-

tiple obstacles, as does Algorithm VI-1 used in conjunction with Algorithm VI-9 below, and also depends on

the analytical characterization of homogeneous-behavior boundaries as line segments or sequences of con-

nected hyperbola segments. His algorithm uses the notion of generalized visibility to build successive sub-

OPMs. It merges OPMs using Voronoi-diagram construction methods from computational geometry, while

algorithm VI-9 must use a more ad hoc approach, since Voronoi diagrams for the more general terrain fea-

tures we consider are not available.

2. An Algorithm for OPM Construction for A Single River Segment

The algorithm to construct the planar partition for a single river segment is similarly straightforward

(see Figure 18). In this case, exactly two shadow boundaries, at most two river-crossing boundaries and one

opposite-edge boundary need to be constructed. If the river-crossing boundaries intersect, the opposite-edge

boundary will begin at their point of intersection. Otherwise, no opposite-edge boundary will exist A change

from the obstacle algorithm is the addition to the optimal-path tree of edges which are crossed by paths, since

these are homogeneous-behavior region roots. Table 7 shows the river-OPM construction algorithm.

As discussed in Chapter I, it is possiblke to model rivers, as well as obstacles and roads, as

homogeneous-cost areas, and so Algorithms VI-4 and VI-6 could be used instead of Aigorithms VI-1, VI-2,

and VI-3. But these first three algorithms are simpler.

3. An Algorithm for OPM Construction for A Single Road Segment

The algorithm for a single road segment is somewhat more complicated, although still straightfor-

ward (see Table 8). As discussed in Chapter V (see Figures 19, 20, and 21), the boundaries which will exist

for a road segment are determined by the positioning of the characteristic wedge with respect to the road ver-

tices. Therefore, top-level decision logic for the algorithm is based on the position of the characteristic wedge.

Procedure conmtruct-rd.bdry is called to compute each specific boundary.

4. An Algorithm for A Single Convex High.Cost Exterior-Goal Homogeneous.Cost Area

The algorithm to compute the planar partition for high-cost area with an external goal is called bca.

opm-hlgh-ext (see Table 9). The equations for each boundary can be found in Appendix A in the Lemma cor-
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TABLE 7

RIVER-SEGMENT OPM ALGORITHM

algorithm single-river-segment-opm (Algorithm VI.2)
input: Optimal-Path Tree with root node N and associated river edge-list R with cost C;
output: Optimal-Path Map M (a DCEL) and medified Optimal-Path Tree N;
purpose: to construct an OPM for a single isolated river segment;

M :=empty dcel structure;
for Nero := each rives-vertex child-node of N P' construct shadow boundaries *1

I
Bdry := Line NcufrN less Half-line NcwrN; P ie, half-line starting at Ncufr, away from goal */
hwert.lnto-dcekM,Bdry); * add shadow boundary to DCEL. *

forj:= I to 2

Focusj := River-Verte;
Cos := cost of optimal path from River-Vertexj;
Bdryj := segment of hyperbola branch with foci /* river-mossing bdry for each river vertex. */

Focusj and Goal, hyp constant = abs(Costj - Cr),
such that branch is closer to Focus;

if Bdryj intersects river segment I* if so, find intersection poinL *
Intersectj := intersection point;

else
Bdryj := null list; /* if not, river-crossing bdry does not exist. */

I
if Bdzy is not null /0 (neither bdry or both bdzys will be null) 1

Intersect,2 := intersection of BdryI and Bdry;
Bdryg := Bdzyi from Intersectl to Intersecti.2;
Bdly2:= BdZy2 from Inrsect2 to Intersect 1,2;
inmt-lnto-dcet(M,Bdhyj); /* add river-crossing bdry I to DCEL */
imert-IlW-dcd(MBdry2); /* add river-crossing bdry 2 to DCEL */
Bdzy := segment of hyperbola branch with /* find opposite-edge bdy. *I

Focusi and Focus2, hyperbolic constant =
abs(Costi - Cost2), such that branch is closer
to the higher-cost focus, with starting point at
Intersecti,, lying away from goal;

River-edgel,2 := Line from Intersect to Intersect2;
rt-kdtto-9p(NRiver-ed e ,2); /* add river-crossing edge to Opttmal-Fh Tree. *1

I
else

Bdry := segment of hyperbola branch with P fWnd opp-edge bdry If no river-crossing bdrys. */
Focusi and Focus2Z hypetbolic consant a-

ab(Cosq - Cost2), such that bwnca is closer

intersection of hyp rcd river, lying away f om goal;
o~dc~M~iefrom Pocw I to Focus2); / add river edon. n bdx k I

leet.Wtint ceM,Bdry); /* add oppoeite-edge bdry to DCEL */
I* end of singe-rlver-opm Algorithm *I
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TABLE 3

ROAD-SEGMENT OPM ALGORITHM

algorithm single-road-segment-opm (Algorithm W-3)
input: Optimal-Path Tree with root node N ard associated road edge-list R with cost Cr;
output: Optimal-Path Map M (a DCEL) and modified Opirna-Path Tree N;
purpose: to construct an OPM for a single, isolated road segment;
I
M :=empt.y dcel structure;
Oc := sin(CWC lckpvvn); /* road critical angle /
Wedge-Rayt := ray from G intersecting road VIV2

at Pt A such that ZGAV2 =7r/2 -Oc;
Wedge-Ray2 := ray from G intersecting road VIV2

at Pt B such that LGBV = ir/2 - Oc; /* A is oriented to B as V is to V2 (see Chap V)*/
if pts A, B, and V1 are ordered "BAVI" /* wedge is "lnside" VI so generate boundary 1

constract-rdbdry(road-end/ravelling,VI); /* types bc and d on the V i end. *f
constrwct-rd-bdry(road-end/goal,Vl);
construct-rdbdry(near-side-road-traveling/goal,Vi);
if pts AB, & V2 are not ordered "V2AB" /* if in addition wedge is not "outside" V2, *

constuct.rd.bdry(road.travelling/crossing,Vi); /* generate type e bdry on V1 end. /
I

else if they are ordered BVA" /* wedge "straddles" V1 so generate boundary */
,cowtrut-rd-bdry(road-shadow,VI); /* typre g on the VI end */

else if they ar ordered "ViBA" /* wedge is "outside" V1 so generate boundary *f

cmteru-rdbdry(near-side-rdtravell'g/goal,V2 ,* types d on the V2 end and f on the Vi end /
construct-rd-bdry(far-side-road-travelling/goal,V2);
)

if pts A, B, and V2 are ordered "ABV2' /* wedge is "lisde" V1 so generate boundary */
I
construd-rd.bdry(road-end/traveUling,V2); /* types b,c and d on the V2 end. *1
cofstrtct-rd.bdry(road-end/god,V2);
contrc-rdbdry(nex-side-road.traveing/goa,V2);
if pt AB, & V1 are not ordered "VIBA" /* if in addition wedge is not "outside" V, *

consruct-rdbdry(road.travelling/crossng,V2); /* generate type e bry on V2 end. *1

else if they are ordered "AV2B" /* wedge "straddles" V2 so generate boundary 1
construct-rdbdry(road-rbadow,V2); /* type g on the V2 end. */

else if they are ordered "V2AB" /* wedge is "outside" V2 so generate boundary '/
I
cofsbc-rdbdry(near-side-rd-travell'ggoal,V2); /0 types d on the Vi end and fon the V2 end. /
const-rutrd.bdry(far-side.road.travellinggoalVi);

/0 end of single-road-opm algorithm *1
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TABLE 8 (CONTINUED)

ROAD-SEGMENT OPM ALGORITHM

procedure construct-rd.bdry
input: type of bdry T, vertex V of road, DCEL M, Optimal-Path-Tree N, and Wedge-Rayl and Wedge-Ray2
output: revised DCEL M and revised OPT N;
pu,.pose: construct each road-generated boundary of type T;
1j := 3-i; /P if i=l,j=2 and if i=2, j=l, i.e., j is other end /
if T = road-end/travelling /* Type "b" boundary */

I BdryI := Ray with vertex Vi, lying on line ViX, such that ZVjVtX = f.2+0¢;
Bdry2 := Ray with vertex Vi, lying on line VjY, such that /VjViY = 37c/2-0,;
lnu'rt-into-dcei(M,Bdryt); /* add road-end/travelling boundary to DCEL. */
inset-into-dce1(M,Bdry2); /* add road-end/travelling boundary to DCEL. */

else if T = road-end/goal /* Type "c" boundary */
I Bdry := the branch closer to Vi of a hyperbola with foci Vi and Goal, and hyp. ( instant = cost from

Vi to Goal via road, starting at point of intersection between hyperbola and type b bdry from V|;
insert-into-dcei(M,Bdry); /* add road-end/goL boundary to DCEL. */
I

else if T = near-side-rod-travelling/goal /* Type "d" boundary */
{if (wedge is not outside Vj) /* wedge is inside V & not outside Vj */

Bdry := segment of parab. s.t. focus = Goal, and directrix D. Wedge-Rayj with D being IGPI from P
(P=A if i=I, else P=B), starts at P, lies away from Goal, ends at inters. with type b bdry from V;

else /* wedge is inside Vi & outside Vj */
Bdry := segment of parabola with focus = Goal and directrix = line L, LlWedge-Rayj such that L is

IGVjI from Vj, starting at P := Vj, lying away from Goal, ending at inters. with type b bdry from Vi;
insert.Into.dce1(M,Bdry); /* add near-side-road-trvlggoal bdry to DCEL. 4/

inmet-into-opt (NPVi,Neaz-side); /4' add travelled road segment to OPT. */
tnser~tnto-dce(M,PV); /0 add travelled segment as edge bdry to DCEL /

else if T = road-travelling/crosng /* Type "e" boundary /
I Bdry := ray starting at P and lying along Wedge-Rayi,

(where P-A if i=1 and P=B if i=2), lying away from Goal;
inet1-into-dcd(M,Bdy); /* add road-travelling/crossing bdry to DCEL*/
insert-into-opt (Nedge PViFar-side); /P add road segment which is travelled to OPT. */
insert-lnto-dcel(M,PVi); / add travelled segment as edge bdry to DCEL */

else if T = far-side-road-travelling/goal /* Type "1" boundary '/
(Inrt.into-opt (N,VjVjNear-side);
Inert-into-opt (NVIVjFar-side);
insert-into-dcel (M,line ViVj); 1' road-edge boundary added to DCEL /
fork:= I to 2

(Bdryk := segment of pantbola with focus = Goal, and directrix = line L, LiLWedge-
Rayk such that L is MOVil from Vi, starting at Vi and lying away from Goal;

insert-into-dci(M,Bdryk); /* add far-side-road-trvlg/goal bdrys to DCEL. ./
I

else if T = road-shadow /* Type "g" boundary */
(Bdry := ray from Vi along line ViG, lying away from Goal;
insert-into-dce(M,Bdry); /* add road-shadow bdry to DCEL /

/* end of cowtruct-rd-bdry 4/
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TABLE 9

HIGH-COST EXTERIOR-GOAL HCA OPM CONSTRUCTION ALGORITHM

algorithm hca.opm-high-ext (algorithm VI.4)
input: Optimal-Path Tree N, HCA A with n vertices;
output: DCEL M. and inodified OPT N;
purpose: to construct the OPM for a high-cost, exterior-goal HCA.

for i:= 1 ton /* add interior bdry for each vertex. */
i
if edge i is visible

if edge i+1 is visible

B := value returned by construct.high-ext.hca.bdry("visible-edge",i);
else

B := value returned by c ruct-high-e.hca.bdry('visible-hidden",i);
else if edge i is hidden

if edge i+1 is visible
B := value returned by constrt-high-ext-hca-bdry("visible-Widden",i+l);

else
if edges ame on different sides of opposite edge

B := value returned by consract-high-d-hca-bdry("idden/diverging",
else

B := value returned by censtruct-bigh-ext-hca.bdry("hiddcn/merging",i)
add B to BdrySet;

BdrySet := value returned by pair-and-.merge.bdrys /* join interior bdrys together. *1
(BdrySet,"high-ext-hca-interio");

form BdryTrees from bdrys in BdrySet;
for each BdryTree

find point X at which BdryTree /* there will be exactly one X per tree /
iente-cts an opposite edge;

B :- value returned by corstct-high-et.hcabdry("oppsite-edge",X);
add B to OEBdrySe;
I

for i := I to n
if Vi connects a visible and a hidden edge

if Vi is not connected to ay intericr BdryTree
add con-hct-gh--hxtcabdry("comer-cutting",X) to BdrySet;

B :-- value returned by conmc-hlgh-eit.hca.bdry("shadow",i);
j :- other vertex of E4
while 1 is nta opposite edge / work around the HCA creating shadow */

I i/ bdIys until the opposite edge, is found. /
B :- value returned by coftruct-high-ext.hca.bdry("shadow"j);
j := other vertex of E
I

B -value returned by pair.and.-erge-bdrys /0 join opposite-edge bdrys together. *1
(OEBdrySct,"high-ext-bcat-extioc);

add B to BdrySet;
for all B 6 BdrySet

lnsert.lnto.dcd(M,B);
} I/ end of hca-opm.high-ext 0/
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TABLE 9 (CONTINUED)

HIGH-COST EXTERIOR-GOAL HCA OPM CONSTRUCTION ALGORITHM

procedure pair-and.merge-bdrys /*join connecting bdrys together. /
input: BdrySet, and type of region;
ou u: revised BdrySet;
purpose: to take an initial set of boundaries, pair the ones which first intersect each other, nnd

propagate a new bdzy fom each intersected pair, continuing until all appropriate bdxys are joined.

while BdrySet is changing
I
PairedBdrySet := BdrySet;
while PairedBdzySet is changing
I
for all BIejr PairedBdrySet where BLj is unmarked

discard Bij from PairedBdrySet;
add BLj from B"tySet to PaixedBdrySet;
intersect B with Bhi and truncate both;
add Bhiru' and Bipj to PairedBdaySet;
inersect Bq; with Ba andtrnncate both;
add Birjn r and BJk "c := to PairedBdrySet;

for all BLje PairedBdrySet
discard all but the shotest Bij from PairedBdrySet;

unmark all bdrYs in PairedBdrySet;
for all BLJ and Bjjke PairedBdzySct such that Bij adjoins Bj.k

mark Bij and Bjx

for all Bt.jad BjkE PairedBdrySet such that Bij adjoins BJAk
add BLk to PaaredBdrySet;

BdrySet := PairedBdrySet,

/* end of pafr.and.nmrgebdrys. *
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TABLE 9 (CONTINUED)

ItIGH-COST EXTERIOR-GOAL HCA OPM CONSTRUCTION ALGORITHM

procedure construct-ligh-ext-hca.bdry /* provides methods to construct each type of*/
input: type of bdry T; index of vertex i; /* bdry of high-cost, exterior-goal HCA. */
output: Bdry, the resut.ing boundary;
purpose: to construct a boundary generated by vertex i of type T;
I
if T = "visible-edge"

Bdr := curve as specified in Lemma V-4. 1;
if T = "visible-hidden"

Bdry := curve as specified in Lemma V.4.2;
if r = "merging"

Bdry := curve as specified in Lemma V-4.3;
if T = "diverging"

Bdry := curve as specified in Lemma V-4.4;
if T= "lca-edge"

Bdry := curve as specified in Lemma V-4.7;
if T = "shadow"

Bdry := curve as specified in Lemma V-4.8;
if T = "opposite-edge"

Bdry := curve as specified in Lemma V-4.9;
if T = "corner-culting"

Bdry := curve as specified in Lemma V4. 10;
S'/* end ofconstruct.high.ext.hca.bdry *
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responding to the boundary type (see also Figures 23, 24, and 25). Each vertex of such a HCA is associated

with an internal boundary, whose character depends on whether the edges incident to the vertex are visible or

hidden (and for vertices on two hidden edges, on whether the vertices nearest the goal for each edge have op-

timal paths which go in the same, or different directions around the HCA, called merging or diverging paths

respectively). These boundaries are computed first, and then procedure pafr-and-merge-bdrys construc's a

network (or networks) of interior boundaries which is connected to the initially-computed boundaries. This

procedure pairs boundaries which intersect, and then plots a new boundary which has an endpoint at the point

of intersection of the paired boundaries. It continues pairing boundaries ard plotting new ones until all the

boundaries are joined together on both ends or intersect an edge of the HCA. Note that deciding which ad-

jacent boundaries should be paired together is not simple, and it may take several iterations for the procedure

to settle on a correct configuration.

The interior boundaries are then joined into trees, and since each interior boundary tree intersects an

opposite edge exactly once, this can serve to begin generation of the external opposite-edge boundaries. In

contrast to obstacles, there can be several HCA opposite edges and opposite-edge boundaries. Corner-cutting

boundaries are indicated when an interior boundary associated with a vertex actually begins, not at the vertex,

but somewhere along the boundary. T, algorith-m next checks for this situation, which can only happen with

respect to a vertexjoining a hidden and a visible edge. This type, ,rtexis also a good place to begin generat-

ing shadow boundaries. Finally, procedure palr-and-mc ;e-bdrys is again used, this time with the exterior

shadow and opposite-edge boundaries.

Figures 30,31, and 32 illustrate the state of procedure pair-and-merge-bdrys at various intermediate

stages in its execution for the example HCAs of Figures 23, 24, and 25 respectively. Edges of the HCAs are

numbered, and boundaries are labeled "ij", where i and j represent the edges crossed by patih on either side

ofie boundary. Boundaries which are paired with another boundary at each stage are noted by an asterisk.

Boundaries which are stored in the data structure PakedBdrySet are noted in the figures as dark lines. Figure

30a, 31a, and 32a show the interiur boundaries associated with each terrain-feature vertex at the beginning of

the algorithm (beginning at the vertex or associated short-cutting point, extending indefinitely into the inte-

rior and then beyond. The current set of interior-boundary trees is also shown, with each node labeled by te

boundary it represents.
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Consider, forexample, Figure 31. Figure 3lb shows the state of Pa~redBdrySet with respect to the

HCA after the first pass through the inner loop ("while PairedBdrySet is changing"), where each boundary

"ij" in the initial set of boundaries is intersected with the two adjacent boundaries, and the shortest version of

"ij" is retained in PairedBdrySet. Those boundaries which pair up with an adjacent boundary are marked with

"*". fn Figure 31b, "1,6" pairs with "5,6" and "1,2" pairs with "2,3". "4,5" and "3,4" were not marked, and so

are going to be replaced in PairedBdrySet by the full versions of their respective boundaries at the start of the

next pass through the inner loop. After the second pass through the inner loop, all boundaries are marked as

in Figure 3 ic, so on the next iteration no changes to PairedBdrySet will be made, so the "while changing" con-

dition will fail, ending the inner loop.

As the outer loop ("while BdrySet is changing") finishes its first pass, new boundaries are generated

from each intersection point of paired boundaries, and these boundaries are placed, unmarked, into Paired-

BdrySet, which replaces BdrySet. This situation is reflected in Figure 31d. Figure 31e reflects the state of

PairedBdrySet after the outer loop has started its second pass, and the inner loop has run until it stabilizes

again. Note that some boundaries which were paired after pass one, i.e., "4,5" and "3,4", are in fact intersected

by second-level boundaries instead, and so the truncated versions of the boundaries need to be retracted from

PairedBdrySet and the full versionsput backinto PairedBdrySet forfurtherinteraction with second-level boun-

daries. This illustrates why such this procedure is complicated, because we are not able to tell with a single

pass which boundaries will be paired. Boundary "1,4" is now propagated from both directions from the inter-

section points of "4,5" and "1,5" as well as "1,3" and "3,4". It is truncated at both ends and paired with itself,

after which the configuration is stable. Thus BdrySet will not change further, so the outer loop will halt with

BdrySet as illustrated in Figure 3 If. At each stage, the interior-boundary trees are built up until, in Figure 3 If,

a single tree results.

In algorithmli hca-opm.lgh.ext, it is assumed initially that there is an opposite point, i.e., a point on

the hidden side of the HCA where two optimal paths go in opposite directions around the HCA. Further, this

assumed opposite point is initially considered a vertex for the purposes of the algorithm. Figure 30 shows a

situation where the algorithm leads to the conclusion that the opposite point does not exist after all, and so

there is no interior boundary incident to it, because there is shortcutting of paths from the outside of the HCA

across the HCA to the goal. The figure also shows a situation where there is more than one interior-boundary
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tree. There is one exterior opposite-edge boundary incident upon an HCA edge associated with each interior-

boundary tree. It has one endpoint at the point at which a boundary of the tree intersects an opposite edge.

5. An Algorithm tor OPM Construction for A Single Convex High.Cost, Interior-Goal

Homogeneous-Cost Area

A much different algorithm is needed to construct boundaries for the case of a high-cost HCA with

an interior goal point (see Figure 26). The existence of interior boundaries are more predictable without the

need for the iterative checking as in the high-cost, exterior-goal HCA case. It is still necessary, however, to

check the intersections of various boundaries and truncate them appropriately, and insert portions of edges

into the optimal-path tree, which is done at the algorithm's conclusion. (See Table 10.)

The algorithm proceeds by looking at each HCA vertex in turn, and determining by observing its op-

timal path whether it is a hidden or a visible vertex. If it is a hidden vertex, the path from the vertex will travel

along an edge of the HCA before cutting into the interior, while if it is a visible verten, the path will go direct-

ly to the goal. If it is hidden, several interior boundaries and one exterior shadow boundary are generated, as

well as possibly an opposite-edge boundary. If it is visible, only one exterior boundary, a visible-edge bound-

ary, is generated.

It is necessary to insert portions of edges into the optimal-path tree according to the traversal charac-

teristics of optimal paths across or along them. For example, it is possible for a portion of an edge from one

vertex to act like a road, where paths leave the HCA interior to travel along the lower-cost edge, and then cut

back in to the HCA when nearer to the goJ. Thus the first portion of the edge would be the root of a

homogeneous-behavior region characterized by paths crossing from the interior to the exterior and travelling

along the edge, and the next portion of the edge would be the root of another region characterized by paths

crossing from exterior to interior. All this information is not available when processing each individual ver-

-tex, however, so edges which may become region roots are stored temporarily, and at each step when infor-

mation is gained which could rule out portions of edges as roots, that information is stored as a "mask", which

is used to mask out portions of edges. At the conclusion of the algorithm, these edges and masks are processed

to determine exactly which portions of edges belong as region roots in the optinal-path tree. Also done at the

conclusion of the algorithm is the intersecting of opposite-edge and shadow boundaries and plotting of new

boundaries in the HCA exterior, much Pke in the interior of a high-cost, exterior-goal HCA.
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TABLE 10

HIGH-COST INTERIOR-GOAL HCA OPM CONSTRUCTION ALGORITHM

algorithm hca-opm.high.int (algorithm VI.5)
input: Optimal-Path Tree with root N, HCA A with u vertices;
output: DCEL M and revised OPT N;
purpose: construct an OPM for high-cost, interior-goal HCA;
(for i:= I to n

{if P # Goal, where OPL(V) = [P I OPL(P)] /* i.e., if path from V lies on edge E 2 of HCA *1
/* with other edge called Ei, an interior linear */

E2 := edge containing VjP; /* bdzy and two parabolic bdrys are formed, */
El := other edge incident to Vi; /* and an exterior shadow boundary is formed. */
B! := value returned by construct-highint.hcabdr("hidden-edge",Vi);
B2 := value returned by construct-high.int.hca.bdry("hidden-edge/goal",Vi);
B3 := value returned by construct-hghint-hca-bdry("visible-edge/goal",P);
B4 := value returned by construct-high.int-bca.bdry("shadow",P);
add B4 to ExtBdrySet;
intersect BI, B2, B3 & add B !tmm to IntBdrySet; /* they intersect at the same point *1
if B2 intersects Ei at some pt X

(truncate B2 at X;
add B2v to IntBdry.Set;
insert-intoopt(N,ViX,"Near-side");
add Ei and Mask(ViX) to VisEdgeSet;
B5:= value returned by construct-high.int.hcabdry("comer-cutting",X);
add B5 to .ExtBdrySet;

/* if paths from two vertices go opposite ways */
else if (OPL(Vi) (Z OPL(VI+1) and OPL(V;+i) (Z DPL(V)) /* around HCA, edge is opp edge. */

(B6 := value returned by construct.hIgh-inthcabdry("interior-opposite-edge",V,V|l);
intersect B6 with B2 & add 16"n" to IntBdrySet;
X := pt where B6 intersects E;
B7 := value returned by constructhigh-int.hca.bdr("exterior-opposite-edge",VVi+I);
add B7 to ExtBdrySet;
Liert-into.op(N,ViX,"Near-side");
insert-into-opt(N,XVi +,"Near-side");
}

else
(imert-into-opt(N,El,"Near-side");
add B2tm to IntBdrySet;

if B3 intersects edge E2 at X
limert-into.opt(N,VIX,"Near-side");
truncate B3 at X,
add B3ja c to IntBdrySet;

else /* i.e., if path goes from V directly to Goal */
(B := value returned by constructlgh.lnt.hca.bdr("visible-edge",Vi);
add B to ExtBdzySet;
add El and E2 to VisBdrySet;
I

post-process.igh.lnt-hca.bdrys;
/* end of hca-opm-high-lnt */
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TABLE 10 (CONTINUED)

HIGH-COST INTERIOR-GOAL HCA OPM CONSTRUCTION ALGORITHM

procedure construct.high-int-hca-bdry * constructs each type of bdry formed by*/
input: type of bdry T; P, the start-point of bdzy; /* a high-cost, interior-goal HCA. */
output: Bdxy, the resulting boundary;
purpose: to construct a boundary generated from point P of type T;
(if T = "hidden-edge" Bdry := curve as specified in Lemma V-5.1;
if T - "hiddenedge/goal" Bdry := curve as specified in Lemma V-5.2;
if T = "visible-edge/goal" Bdry := curve as spccificd in Lemma V-5.3;
if T = "interior-opposite-edge" Bdxy := curve as specified in Lemma V-5.4;
if T = "hca-edge" Bdry := curve as specified in Lemma V-5.5;
if T = "shadow" Bdry := curve as specified in Lemma V-5.6;
if T = "exterior-opposite-edge" Bdry := curve as specified in Lemma V-5.7;
if T = "corner-cutting" Bdry := curve as specified in Lemma V-5.8;
if T = "visible-edge" Bdry := curve as specified in Lemma V-5.9;

P* end of construct-high-int-hca-bdry */

procedure post-process-high-int-hca-bdrys /* store bdxys and edges. */
input: VisEdgeSez, the set of bdrys from visible edges, IntBdrySet, the set of

interior bdrys, ExtBdrySet, the set of exterior bdzys, and Optimal-Path Tree N;
output: DCEL M, and revised OF N;
( for each edge E e VisEdgeSet

(for all MaskiE E:= E less Mask;
N := value returned by insert.into-opt(NE);

foreach bdryB e IntBdrySet
if another version of B exists

(truncate B and B';
inwet-into-dce1(M,Btwc);

for each bdiy B e ExtBdrySet
join-high-int.bdrys(B,ExtBdrySet);

for each bdzy B E ExtBdrySet
insert.into-dcel(MB);

/* end of post-process-hlgh-int-hca-bdrys */

procedure join-high-int-bdrys /*joins external bdrys. */
input: bdry B, set of bdrys ExtBdrySet;
output: revised ExtBdrySet;
purpose: to pair bdrys which first intersect, and propagate new ones from their pt of intersection.
(for each B2 6 ExtBdrySet such that B I and B2 intersect and BI and B2 are adjacent

(truncate B 1 and B2;
remove original B 1 and B2 from ExtBdrySet;
:kdd R I unc : -ia H'/runc to ExtBdrvSet:
T:= type of new bdr; / based on edges El and E2 not4 '/
B3 := value returned by * common to B !unc and B2' nc. /
construct-hca-opm-high-int-bdry(T,E1,E2)
joln-high-lnt-bdry(B3,ExtBdrySet); /* recursively follow bdry outward from HCA. */

/* end ofjoln.high-int-bdrys. */
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6. An Algorithm for OPM Construction for A Single Low-Cost, Exterior-Goal

Homogeneous-Cost Area

The exterior-goal-low-cost-region algorithm shown in Table 11 looks at each HCA vertex in turn,

basing its logic on the initial direction of the optimal path from the vertr. being examined (see Figure 27). If

the optimal path from a vertex goes into the HCA interior, two rays, or vertex/edge-crossing boundaries, are

constructed forming a wedge outward from the vertex and away from the goal. If the optimal path goes along

an edge of the HCA, one of the above boundaries, the one closer to the direction of travel of the optimal path,

is instead a vertex/edge-following boundary, and in addition a paraboV.-, or vertex/goal boundary is con-

structed. The third possibility is that the optimal path goes directly into the HCA exterior, i.e., toward the goal.

If so, more boundaries may or may not be generated. If a portion of each edge adjacent to the vertex is visible

to the goal, i.e., if for both edges there are paths starting at some points on the edges which go directly into the

HCA exterior, then a visible-edge boundary will emanate from the vertex into the HCA interior.

With the above boundaries generated, two tasks remain. First, each parabolic, or edge-following/goal

boundary must be followed away from the goal to see if it intersects the next ray boundary. If so, a hyperbolic,

or vertex/goal boundary will begin, with one focus at the vertex. This hyperbola must then be followed in turn.

If it intersects a ray boundary, a "distorted-parabolic", or edge-crosing/goal boundary will begin. As we con-

tinue to follow this sequence of boundaries, hyperbolas and distorted-parabolas occur alternately u.til no in-

tersection with a ray is found. Note that this algorithm generates each parabolic and distorted-parabolic

boundary in the initial phase, and then generates hyperbolas as needed n procedure add-hyp-bdrys-for-low-

ext-bca below, which in addition truncates each boundary as necessary.

Although this type of HCA has interior boundaries, which one might suppose would need to be pired

and merged as with the high-cost, exterior-goal case, in fact it is not necessary to do this. The reason is that

such boundaries are all of the visible-edge type, and because the HCA interior is of lower cost than the sur-

rounding terrain, these boundaries will never intersect. Intuitively in the high-cost exterior-goal case, a path

travels to an edge further away in straigit-line distance in order to take advantage of the lower external cost

outside that edge, and at that point, two boundaries would intersect and a third emerge. Here, however, the

path is already in the least costly terrain possible, a)d so furthr paths will continue to follow the same paths

as those closer to the goal. For each visible-edge boundary, a point of intersection is plotted with the far edge
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TABLE 11

LOW-COST EXTERIOR-GOAL HCA OPM CONSTRUCTION ALGORITHM

algorithm hca-opm-low-ext (algorithm VI-6)
input: Optimal-Path Tree with root N, and HCA A;
output: Optimal-Path Map M (a DCEL) and modified Optimal-Path Tree N;
purpose: construct an OPM for a low-cost, exterior-goal HCA,

for each vertex V of A with incident edges Ei and E2 /* comidcr each vertex and its adjacent edges */
such that Ei = VVi and E2 = VV2, where 1V2GI /* whet.- Vi is closer to goal than V2, and */
IVIGI and OPL(V) = [P I OPL(P)] /* whre P is the first point on V's opt path. *1

if VP lies in HCA interior /* if optinmal path from V goes into HCA interior */

construct-low-ext-hca-bdry(vertex/
edge-crossing,V,VhV2); /* two rays are Snell's-Law paths across /

coostruct-low-ext-hca.bdry(vertex/ /* edges Ei and E2 through vertex V *1
edge-crossingV,V2,Vi);

insert-into-opt(N,VVIFar-side); /* add edges to OPT as region roots. 1
insert-into-opt(N,VV2,Farside);
I

else if VP lies along HCA edge Ei /* if opt. path from V goes along an HCA edge */

construct-low-ext-hca-bdry(edge-foUowing/
goal,V,VIV2);

consruct-low-ext-hca.bdry(vertex/
edge-folowing,VVi,V2); /* two rays are Snail's-Law paths across */

construct-low.ext-hca.bdry(vertex/ /* edges El and E2 through vertex V */
edge-crossingV,V2,V);

insert-intoop(N,VPNear-side); /* add edges to OPT as region roots. */
iflset-hf"lO-OPKN,VV2 Far-side);
I

elsa if ((Q! is in HCA exterior) or (VIQI VIV)) /* if both edges are visible or partially visible */
and ((Q2 is in HCA exterior) or (V2Q2G V2V))) /* (optimal path from V lies in HCA exterior). */
:vere OPL(VI) = [Q1 I OPL(QI)] P' Note: Qi are the first points on */
and OPL(V2) = [Q21 OPL(Q2)J /* the optimal-path lists of each Vi */

construct-low-ext.bca.bdry(visible-edge, /* vis-edge bdzy from V w.r.t. Et and E2 */
V,VhV2);

fori :- I to 2
if(VIQIE VIV) /* add a region root the portion of*/

lwt-Into-op(N, QiV, Far-side); /* edge across which paths cross. */
else inertmtnto-opt(N, VIV, Far-side);

add-hyp.bdrysforlow-.exthca(ParabBdys);
/* end of algorithm hca-opm-low-ext /
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TABLE 11 (CONTINUED)

LOW-COST EXTERIOR-GOAL HCA OPM CONSTRUCTION ALGORITHM

procedure add.hyp-bdrys-for-low-ext-hca; /* put- hyperbolas between padrs of ray bdrys "I
input: ParabBdrys, the set of parabolic boundaries;
output: revised DCEL;
purpose: to concatenate hyperbolic bdrys onto parabolic ones.

while ParabBdrys 0

select bdry Bi tParabBdrys associated with vertex Vi aw edge Ej;
truncate B 1 and the vertex/edge-following or vertex/edge-crossing bd-y B7 emanating

from Vi. and associated with edge q at the point wL'.- they intersect;
B4:= value returned by construct-low- /* bdry is hyperbola intarsecting one or /

ext-hca-bdry(vertex/goal,Vi,VVk); /* both rays emanating from vertex Vi */
if B4 intersects vertex/edge-crossing bdry

B3 associated with Vi and edge Ek. kej,
I
truncate B3 and B4 at their point of iersection;
truncate BsE ParabBdrys assoc. with VS and Ek, g#i, at its intersection with B3 and B4;

remove B1 from ParabBd.ys;
/* end add.hyp-bdrys-for-low-ext-hca /

of the HCA, and an opposite-edge boundary is generated, which is really just a continuation of the visible-

edge boundary after crossing another edge.

Procedure construct-low-ext-hca-bdry performs the low-level function of generating each bound-

ary for the low-cost, exterior-goal HCA as needed. For boundaries whose forms are general curves, the reader

is referred to the appropriate Lemma in Chaper V and proof in Appendix A.

7. An Algorithm for OPM Construction for A Single Low-Cost, Interior-Goal

Heowgeeous-Cost Area

Algorithm hca-opm-low-ln is the simplest of the four HCA algorithms, in keeping with the simple

natre of the regions and boundaries associated with this type of HCA (see Figure 28 and Table 12). Since a

low-cost, interior-goal HCA generates only one wedge of two rays at each vertex, and these rays are guaran-

teed by the orientation of the HCA edges not to interact, the corresponding algorithm can do its work in one

pass through the list of vertices.
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TABLE 12

LOW-COST INTEPJOR-GOAL HCA OPM CONSTRUCTION ALGORITHM

agorithm bca-opm-low.int (algorithm VI-7)
input: Optimal-Path Tree with root N, and HCA A;
output: Optimal-Path Map M (a DCL) and modified Optimal-Path Tree N;
purpose: to construct the OPM for a low-cost., interior-goal HCA;

M :=empty dcel stricture;
for each edge VIV2 ofA

I
BdryI := ray starling at Vi, lying away /1 two bdrys emanate from each vertex, */

from Goal G thxu pt Xi, such that /* at the Snell's-Law angle with respect*/
LGVIV- i/2- 0 1, LXIVIV2 =7/2+02, /* to each edge. */
and cintsinOi = cxt sin 02;

Bdry2 := ray starting at V2, lying away
from Goal G tirn pt X2, such that
LGV2VI= /2-0 i, Lx 2V2 Vt = 7r2+02,
and cin, sinl = crxt sin 02;

insert-iato-dced(M,Byj); 1* add vertex/edge-crossing bdrys to DCEL*/
Lnaert-into-dcekM,Bdy2);
imert-1nto-dcI(M,VIV2); /* add HCA-edge boundary to DCEL *1
imert.lintoopt(N,edge VIV2,Far-side); /* add edge which is crossed to OPT. */

/* end of hca-opm.low.nt *1

C. EXTENDING THE BASIC ALGORITlMS TO MULTIPLE CONNECTED RIVER AND

ROAD SEGMENTS

1. An Algorithm for OPM Construction for Multiple Connected River Segments

It s now possible to build on a basic understanding of the nature of boundaries generated by single,

isolated river segments in order to construct the boundaries associated with multiple, connected linear river

segmen , or rivers. There may be two or more river segments emanating from a single vertex, but all seg-

ments of a river must have the same crossing cost. It might be thought that the algorithm proposed below to

*'nn~tm,-t tha nntimal-noh man fnw mosteinbtarmin fiattwo ensiU ho stcar tn enmetnir st Mrw thto tnA nt car-.

rain as well. However, connected river segments are not "decomposable" into their constituent segments.

Decomposability of a set of terrain features is defined as follows.
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Terrain map M with optimal-path tree N is defined as decomposableforpath planning into subsets

St and S2 if both S i and S2 are consistent with OPT N. Say that a set of terrain Si which is a subset

of a set of terrain S is consistent with an OPT N constructed for S if for an OT Ni constructed for
Si considered alone, every node of Ni appears in N, and the parent of every node of Ni appears in
the path from the node to the root of N.

In other words, if one subset could not behave in the way it does without the presence of the other,

the terrain is not decomposable. Connected river segments have as part of their nature that at internal vertices,

i.e., where two segments join, there are regions where pats must either cross a river or move away from the

vertex, while for the individual segments, a path could bypass the river segment by simply moving around the

vertex. Thus a set of connected river segments is not decomposable into its individual segments.

Two high-level paradigms in addition to those used for single river segments ate useful here. Fust,

we partially sort the river segments according to their general visibility to the goal, i.e., so that a segment which

is fully or partially occltzded by another follows it in the partial order, and we process the segments according

to this partial order. Thus boundaries which may affect other segments are aready in place by the time the

other segments are considered. Second, whenever a boundary intersects an occluded segment, an eventpoint

is generated. When a sege b processed, it is neca to consider each event point and decide whether the

boundary which cavsed tbe evert point continues on the other side of the river segment. Figure 33 shews a

river consisting of connectedfiver segments, and Figure 34 shows a wort-case orientation of segments.

Severl new temis must be defined. General vi.btlity between two terrain features is defined as fol-

lows. Two features Ft and W are generay visibl wi ;spect to a goal G if them is a sequence of features

Fl, i=l to-, such that for all i, Fi is visibL- to Fi+t. A feature FJ is occluded by another Fj with respect to goal

G if for evety seqtwme by which Fi and G are generally visible, Fj i a member of the sequence. In other words,

PI is occluded by Fj if it is partily or completely within the shadow of Fj cast by G. An endpoint V of line

segment LI is defined as an exterior vertex if V is not an endpoint of any other line segment, or if segment L2

of which V is an endpoint occludes LI. V is defined as an interior vertex if it Is not an exterior vertex. Intui-

tively this means that an optimal path from an interior vertex must either cross the river or move away from

the vertex to get past the line segment, while from an exterior vertex an optimal path can simply move around

the vertex and bypass the river. Figure 33 shows the partial ordering of river segments as well as the exterior

or interior nature of each vertex.
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The algorithm based on these ideas is complicated by the possibility that rivers may turn back on

themselves and cizate pockets where, for a high-enough crossing cost, it is cost-effective to move away from

the goal out of the pockets rather than cross a river. This situation is illustrated in Figure 33a, in the vicinity

of vertices 8 through 11. A type of boundary in addition to those presented in Chapter V for single river seg-

ments is generated in this case, although it is very similar to the other types. Whenever an exterior vertex Vt

is encountered in the course of processing river segments, a river-crossing boundary is generated for that ver-

tex, as explained in Chapter V. If this boundary does not intersect any segment between Vi and V2, all paths

from immediately on the far side of the river including the path from V2 will go via VI. In this situation there

will be a boundary which separates paths which cross a river toward the goal from those which move away

front the goal and eventually go through V2 and then through V1. At each interior vertex, as well as at the next

exterior vertex, a portion of this boundary will be generated. This type of boundary is called a near-side-river-

crossing boundary and it is exactly the complement of the river-crossing boundary which would be generated

from that vertex if an optimal path from the vertex lay forward across the river. In other words, it starts at the

current river segment and lies forward toward the goal.

An example of a near-side-river-ciossing boundary in Figure 33 has one end-point on segment (8,9).

From there, it lies toward the goal until it intersects a shadow boundary which starts at vertex 9. The next por-

tion of the boundary is the hyperbola segment whose axis is the line between vertices 10 and 4. After it inter-

sects the shadow boundary from vertex 10, the boundary is the hyperbola segment whose axis is the line

between vertices 11 and 4. Finally, it ends at the point where it intersects a river-crossing boundary separat-

ing points whose paths go around vertex 5 from those whose paths cross segment (7,8). From there an op-

posite-edge boundary begins, separating points whose paths go around vertex 5 from those which go around

vertex 11. A second example of a near-side-river- crossing boundary is in the vicinity of vertex 1.

At each interior vertex V, the test for a near-side-river-crossing boundary is as follows. If for a point

arbitrarily close to V, but on the near side of the river, called V, the optimal-path list of W includes V'.% the

currently active exterior vertex, a near-side-river-crossing boundary is generated. The foci are V and the ver-

tex or goal point X such that the cost of a straight-line path from V to X plus the cost of the optimal path from

X is minimized, and the hyperbolic constant is the cost of the optimal path from V minus the sum of the cost

of the rivers crossed from V to X and the cost of the optimal path from X. In this case, the shaiow boundary
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from V may intersect the boundary at a point P. The boundary stoxts at its intersection with the current river

segment, or if it is the second or subsequent portion of the boundary to be generated, at its intersection with

the previous boundary portion, and ends at point P. If the boundary intersects the river-crossing boundary

generated by Vext, it ends at that point and the Vext boundary constitutes the remainder of the boundary.

Shadow boundaries follow the same specifications as listed in Chapter V, namely that a vertex V,

with an optimal path which goes first to point P, generates a shadow boundary which is a ray starting at V and

lying away Lom P on the line VP, but with the variation that it must be considered whether the optimal path

of V crosses the river segment or not. If for V as defined above, and for V+ arbitrarily close to V on the far

side of the river segment, V- can be positioned so as to lie on the optimal path of V+, a aormal shadow bound-

ary results. This is the case where paths from the far side of the river may cross in the vicinity of V, and such

a boundary simply keeps track of which segment the paths cross.

If V- includes in its optimal path the current Vext, it will be the case that V+ does so as well, and the

shadow boundary which results will conform to the above specification with respect to V- and will have the

unusual characteristic that it lies on the near side of the river segment. This is the case where points on the near

side of V are caught in a "pocket" for which it is faster to move away from the goal and around Vext than to

cross river segments forward of V. Such a shadow boundary separates points which go to V and then to the

vertex on the next river segment from those which bypass V and go to the next vertex directly.

IfV+ includes in its optimal path the current Vext, but V- does not, the shadow boundary from V will

be formed with respect to V, and lie on the far side of the river. This is the case where the optimal path of V"

lies on the same side of the river segment as does the optimal path of Vext, but the optimal path of V+ includes

Vext, signifying that paths on the far side of the river in the vicinity of V will not cross it, but paths on the ear

side will lie generally toward the goal, not being caught in a "pocket" which causes them to move away from

the goal to avoid crossing subsequent river segments. Table 13 shows the algorithm for construction of mul-

tiple connected river segment.
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TABLE 13

MULTIPLE-CONNECTED-RIVER-SEGMENT OPM CONSTRUCTION

ALGORITHM

algorithm multi.segment-river-opm (algorithm V18)
"h~ut: List of river segments R, river-crossing cost Cr, Optimal-Path Tree N, Goal G;
output: D-CEL. M and revised OPT N;
purpose: construct a planar partition and revise the OPT for multiple, connected river segments;
(partially order R so that Si < Sj iff Si obscures part of Sj with respect to G;
for each segment S e R in partial order, letting S = VIV2 where VI is closer to G than is V2

(plot shadow bdry from Vi;
plot shadow bdry from V2;
intersect bdrys with all subsequent segments, noting an event-point whenever intersection occurs;
if Vi is "exterior"

Vext := VI;
sort event-ps on VIV2 with respect to Vi,

including V2 as an event-point;
until a river-crossing bdry is plotted for VI

or event-list is empty
(select next event-point E;
Er:= root of region on side of E closer to V I;
Cvext := IEVcxtl + I(VcxtG)*;
C& := IEEI + 1(ErG)*I;
if Cvet > CEr

plot river-crossing bdry with respect to V-xt and E;
else

delete portion of bdry BE lying away from Goal;
I

I
else

do nothing; /* if V1 is "interior", b/

if V2 is "interior"
(V: point arbitrarily close to V2 on same side of river

as first leg of optimal path from Vext;
V2 := point arbitrarily close to V2 on opposite side of river

as first leg of optimal path from Vext;
if Vxt (V2G)* and V euE (V2G)*

(plot shadow Mry B i such that for OPL(V2"G)* = [P I OPL(P)1,
BI := ray on line V2P starting at V2, lying away from P;

X := vertex or goal such that /* ie, vertex with best cost from V2 to X to Goal, */
IV2X1 + I(XG)*I is minimized; 1' with hyp cost := C.no. rivers crossed by V2X. */

plot B2 := near-side-crossing bdry with /* note that if intersection is beyond Vi, there is */
foci V2 and X, where B2 starts at point of 1' another near-side-crossing bdry which "/
intersection with line ViV2 and ends at P' intersects B2. */

else if P- = P-, where OPL(V2") = [P" I OPL(PV)] and OPL(V14) = [P+ I OPL(P4)]
plot shadow bdry on line V2P+ starting at V2 lying away from P+;
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TABLE 13 (CONTINUED)

MULTIPLE-CONNECTED-RIVER-SEGMENT OPM CONSTRUCTION

ALGORITHM

else /* V2 is "exterior". */
if Vext e (Vi-G)* and Vet e (VI+G)* /* if V2 is "hidden". */

(plot shadow bdry B1 such that for OPL(Vi'G)* = [P I OPL(P)],
BI := ray on line VIP starting at VI, lying away from P;

X := vertex or goal such that /* te, vertex with best cost from Vi to X to Goal, */
IViXI + l(XG)*l is minimized- /* with hyp cost:= Cr'no. rivers crossed by V2X. */

plot B2:= near-side-crossing bdry with /* note that if inte.,section is beyond V2, there is /
foci VI and X, where B2 starts at point of /* another near-side-crossing bdiy which */
intersection with line VIV2 and ends at /* will intersect B2. /
intersection with B I;

}
else /* V2 is "visible". *1

{Vxt := V2;
sort event-pts on VIV2 with respect to V2,

including VI as an event-point;
until a river-crossing bdry is plotted for V2

or event-list is empty
(select next event-point E;
Er:= roo: of region on side of E closer to V2;
Cvext := IEVextl + I(VextG)*i;
CEr := IEEI + t(EqG)*I;
if Cvext > CEr

plot river-crossing bdy with respect to Vext and Er;
else

delete portion of bdry BE lying away from Goal;

join and merge bdrys associated with VIV2, noting all
intersections with obscured segments as event-points.

/* end of "for each segment". */
join and merge all bdrys;

/* end of algorithm multl.segment-river-opm. */

2. OPM Construction of Multiple Connected Road Segments

Unlike connected river segments, connected road segments are decomposable into their constituent seg-

ments. The basic reason for this is that road segments will not serve to block or hinderpaths, but only to operate

as conduits. Therefore, connected road segments can be decomposed into individual segments by algoritfihn

VI-9 below, algorithm VI-3 used on each segment, and the resulting OPM's merged into a final OPM.
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D. A DIVIDE-AND-CONQUER ALGORITHM FOR MULTIPLE-FEATURE OPM

CONSTRUCTION

A principal goal of our research is to find an algorithm which will create optimal-path maps for multiple

terrain features of the four types described above. Although the investigation into this problem is not complete

in all its details, we propose the following high-level aescription of such an algorithm (see Table 14).

Methods for constructing Voronoi diagrams (see Chapter II) provide a model for approaches to the con-

struction of an optimal path map for multiple terrain features. Voronoi diagram methods use a divide-and-con-

quer approach, in which the points in the plane are divided into two roughly equal sets, the Voronoi diagrams

of the two sets computed recursively, and the two Voronoi diagrams merged to produce the final one. The first

key question is how to divide the points in the plane. The answer in this case is that in order to support the

merge phase, the plane is partitioned into two half-planes by a line (by convention, a vertical line) which equal-

ly divides the set of points in the plane. The other key question is whether the two intermediate Voronoi

diagrams can be merged. Standard generalized-Voronoi-diagram construction algorithms provide an affirm-

ative answer to this question, depending on the fact that the boundary between any two Voronoi regions in bi-

nary terrain (i.e., obstacles on a homogeneous-cost background) is a straight line segment or a hyperbola

segment [Ref. 8].

The analogous questions with respect to optimal-path map construction are whether terrain features can

be divided in the same manner as points, and how two opthnal-path maps with the same goal can be merged

into a single, combined OPM. An encouraging aspect of this problem is that when constructing OPM's for

single terrain features, we rely on the optimal paths from only the terrain-feature vertices, which are computed

by standard point-to-point path planners and take all the features of a map into account. Thus the optimal paths

from any vertex will remain the same regardless of which terrain feature3 are incorporated into the OPM.

Another important aspect of this problem is the unifying perspective with regard to regions and boundaries

proposed in Chapter V, Section C. Since there are only three types of non-degenerate region roots, i.e., points,

at the intersection of any two general boundaries to generate a new boundary by considering the six types of

boundaries between regions of three possible types of roots. Actually, as discussed in Chapter V, the Snell's-

Law edges do not comprise a single class of region roots, because edges with different numbers of edge-cross-
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TABLE 14

MULTIPLE-FEATURE OPM CONSTRUCTION ALGORITHM

algorithm multiple-feature-opm (algorithm VI.9)
input: L a listing of lists of vertices and types of each terrain feature, and

N, the optimal-path tree associated with Map;
output: M, a DCEL describing the planar partition of OPM associated with Map, revised OPT N;
purpose: to construct an optimal-path map for input map consisting of any number of terrain features;

if Map contains only one terrain feature /* base case of the recursion. */
OPM := appropriate single-feature algorithm;

else

(Setl,Set2) := value returned by halve.map; /* divide map into two roughly equal sub-maps. *1
N! := N less region roots associated with Set2;
N2 := N less region roots associated with Sett;
OPMi := value returned by multiple-feature-opm(Sett, Nr);1* recursively solve each sub-problem. */
OPM2 := value returned by mulflplefeature-opm(Set2, NI);
OPM := result of merge-opr.s(OPMi,OPM2,NN2). /* find OPM by merging two sub-OPM's. */

1* end of multiple-featurc-opn. */

procedure halve-map
input: Map, the list of lists of terrain-feature vertices and types;
output: a pair of sets such that the first is the left half of the map and the second is the right half;
purpose: divide Map into two roughly equal-sized sub-maps;

for each decomposable terrain feature
find the left-most vertex;

compute the median x-coordinate;
for each terrain feature F

if its left-most vertex is less than the median
Set, := SetltUIFJ;

else
Set2 := Set2U(F};

/* end of halve-map. *I
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TABLE 14 (CONTINUED)

MULTIPLE-FEATURE OPM CONSTRUCTION ALGORITHM

procedure merge-opms
input: OPM1 and OPM2, DCEL's of the two input OPM's;
output: OPM, the DCEL containing the planar partition of the merged mnap;

OPT N, the revised optimal-path tree;
purpose: merge two OPM's into one;
(( := vertical chain such that all terrain features of OPM! are entirely

to its left and all terrain features of OPM2 are to its right;
BdrySet := Set of all B such that Be OPMt or Be OPM2 and B intersects 0;
while BdrySet is changing

(PairedBdrySet := BdrySet;
while PairedBdrySet is changing

(for all Bije PairedBdrySet /* where h, i,j, andk index the regions of OPM. *I
where Bij is unmarked
(discard Bij from PairedBdrySet;
add Bi.j from BdrySet to PairedBdrySet;
intersect B~i with Bhi and truncate both;
add Bh,i and Bi~j unc to PairedBdrySet;
intersect BLj with Bjk andtruncate both;
add BijrI and Bj,ki r:= to PairedBdrySet;
I

for all Bije PairedBdrySet
discard all but the shortest Bij from PairedBdrySet;

uwmnak all bdrys in PairedBdrySet;
for all Bij and BJ,ke PairedBdrySet such that BIj adjoins BJ,k

mad: Bij and Bjk;
}

for all B~jand Bj,kePairedBdrySt such that BLJ adjoins Bj,k
add Bi,k to PairedBdrySet;

BdrySet := PairedBdrySet;
}
for each new B' e BdrySet

(intersect.and-merge(B', fall bdrys from OPMI assoc with RfI);
intersect-and.merge(B', (all bdrys from OPM2 assoc with R2);

S/* end of merge-opms. /

procedure interset-and-merge
input: B, a new boundary, and BdrySet, a set bdrys potentially intersecting B;
output: revised DCEL M;
purpose: propagate the effects of new boundary B in one of the subordinate OPM's;
I for each bdry B' e BdzySet

if B intersects B'
(truncate B and B'at their point of intersection;
find regions Ri and Rj which are adjacent to B and B respectively, but not common to both;
construct Brc by referring to the roots of Ri and Rj respectively;
for each boundary B"in BdrySet which B'previously intersected

intersect-and.merge(B", BdrySet less B');
I

/* end of intersect-and.merge. */
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ing episodes enroute to the goal will create boundaries of different analytic characteristics. However, the con-

cept is promising.

To divide decomposable terrain features (see Section C above for a definition of decomposability) of the

input map into two approximately equal sets whose resulting OPM's can be merged is not difficult. In fact, it

appears that any partition is feasible as long as it does not split a terrain feature, but some will be much more

efficient than others. Of course the advantage of a divide-and-conquer algorithm is its logarithmic performance

in the recursive stage if it is guaranteed that divisions are approximately equal-sized, so any partitioning pro-

cedure should have this property. Also, it should not take an excessive amount of time to accomplish the par-

tition, since this step will play an important part in the overall time complexity. And thirdly, since the merging

step will depend on checking for intersections between ail boundaries of one sub-CM and all boundaries of

the other, it would be very useful if it were not necessary actually to check most of these boundaries. Tiis

would be the case if at each step in the recursion, the two OPM's represented terrain which did not, loosely

speaking, "interleave". For such OPM's, boundaries which lay wholly within the interior of the two planar

partitions would not have to be checked for intersection.

The merge step depends on the fact that any two boundaries, when they intersect, represent the meeting

point of three regions, one of which is common to both boundaries. A new boundary will emanate from the

point of intersection which separates the two regions which the original boundaries did not have in common.

Rather than attempt to study all the special cases of possible region intersections among boundaries present in

the nine algorithms thus far presented, it is preferable to use the unifying approach to boundary generation

which considers the two types of region roots involved and selects from the limited number of boundary types

to find the new boundary. However, since there are infinitely many possible types of Snell's-Law edges based

on the number of edge-crossings between the edge and the goal, an approximate solution is proposed. Since

boundaries between Snell's-Law edges are similar to hyperbolas, it is proposed that for all except the varieties

already derived in Appendix A, hyperbolas be used as approximations to the exact curves.

When a new boundary has been generated because of the intersection of two boundaries from different

sets, the effects may propagate into both partial OPM's. This will be, in "he worst case, a very expensive opera-

tion, because unlike Voronoi diagnam construction, the boundaries between regions are not simple lines, and

the effects are not guaranteed to be local. Each boundary which is truncated by the new boundary must be fol-
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lowed to its end (before it was truncated, and if it intersected other boundaries, these in turn must be recon-

sidered with respect to the new boundary.

Algorithm VI-9 describes this method of constructing an optimal-path map for input maps containing

any number of the seven types of primitive terrain features and connected river and roa segments. At each

level of recursion, the algorithm divides the terrain into two roughly equal sets, based on a calculation of the

median leftmost vertex. At the lowest level, that of a single terrain feature, the algorithm calls on Algorithms

VI-I through VI-8 to construct an OPM for the feature. At higher levels, OPM's are merged by procedure

merge-opms.
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VII. ANALYSIS OF DIVIDE-AND-CONQUER EXACT-OPM ALGORITHM

A. SOURCES OF ERROR IN THE ALGORITHM

The divide-and-conquer exact-OPM algorithm produces a more accurate optimal-path map than the

wavefront-propagation OPM algorithm, but it still has error with respect to the conceptual OPM it models. In

terms of the categories of error discussed in Chapter 1, the model-cost versus real-world-cost error occurs be-

cause of approximations in the terrain database of continuously-varying terrain with 12,5m square cells.

The second category of error, model-computed-cost versus model-optimal-cost, appears in several forms

in the output of this algorithm. The two most significant are discussed he . First, each boundary whose analyti-

cal form does not have a closed-form solution is represented by apiecewise-linear approximation. These boun-

daries are plotted parametrically, iteratively setting one parameter and solving for the other. Fortunately for

the precision of the algorithm, most boundaries have very little curvature (see for example, Figures 22, 23, and

24). An exact analysis of the impact of this type oferror has not been done, but the proof-of-concept implemen-

tation for the high-cost, exterior-goal homogeneous-cost area (HCA) plotved twenty or fewer points for each

curve, and in all test cases, error of this type was too small to be visible in the laser-priter output.

What error does occur will have the effect of causing start points which are close to a boundary to be

placed in an incorrect region. These start pliats will then be associated with paths which are not quite optimal.

But along a boundary there are two equal-cost paths to the goal from each start point. On an approximate

boundary one of these two paths will be slightly more costly than the other. This error will be no greater than

the cost-rate in the region times the maximum distance of the piecewise-linear approximation from the actual

curve. Since the approximation seem to be very close to the actual curve in observed cases, it seems safe to

state that this error can be ignored in most practical applications.

A second source of error in the category of model-computed-cost versus model-optimal-cost is using hy-

perbolas to approximate boundaries between homogeneous-behavior regions having paths with more than two

Snel's-Law crossings. An exact analysis of the error caused here has not been done. But for regions whose

paths have multiple Snell's-Law crossings leading to a region root which is a point, as the regions lie further

and further away from the point, they have cost functions (called "distorted cones") which have flatter and
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flatter iso-cost contours, leading to boundaries with less and less curvature. The approximating hyperbola

should be closer and closer to the actual boundary as the boundary becomes almost linear. The error in the

computed cost of an optimal path caused by this approximation can be ignored in most applications.

The third category of error discussed in Chapter 11, that of model-computed-location versus model-op-

timal-location, occurs only in the situations discussed above where a start point is incorrectly placed on the

wrong side of a boundary. When this happens, the computed path will have a distinctly different behavior than

the true optimal path.

B. TIME AND SPACE COMPLEXITY OF THE ALGORITHM

We begin by analyzing the construction of the optimal-path tree, and then analyze the algorithms proposed

for each primitive terrain feature type in an isolated setting, because the final algorithm uses the previous ones

as base cases of its recursion.

1. Time and Space Complexity of Optimal-Path Tree Construction

Prior to the execution of the algorithms introduced in Chapter VI, the optimal-path tree (OPT) must

be constructed. A brute-force method which finds optimal paths from each terrain-feature vertex and then in-

serts each path into the OPT would take, using the continuous-Dijkstra algorithm, O(nL) time in the worst

case, and using recursive wedge decomposition, O(n3) in the average case, where n is the number of terrain-

feature vertices, and L is a measure of the precision of the problem repre&sntation. Insertion into the OPT as

described in Chapter VI would take, in the worst case, no more than 0(n2) time, because no path list is longer

than n, and there are n path lists to be inserted. The optimal-path tree has no more than one node for each ter-

rain-feature vertex and edge, plus one for the goal poitr.. Thus, its worst-case space complexity is 0(n), since

with the assumed terrain constraints, there are O(n) edges. A more efficient way to use the continuous-Dijkstra

algorithm is possible which computes paths to all vertices and builds the OPT in one execution of the algo-

rithm, giving O(n7L) worst-case time complexity. Recursive wedge decomposition can also be modified to

mE.rwe thk t wav.

2. Time and Space Complexity ofThe Single-Obstade-OPM Algorithm

Algorithm VI-I constructs an optimal-path map for a single isolated convex obstacle with respect to

a goal. For an obstacle with n vertices there are at most n shadow boundaries, which can be constructed in
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O(n) time by a depth-first traversal of the the optimal-path tree, generating a shadow boundary for each node

in the tree except the one representing the empty path list. Each hyperbola segment which is part of the op-

posite edge can be constructed in constant time, and there are at most n-2 intersections of the opposite-edge

boundary with shadow boundaries. Thus the cpposite-edge boundary can be constructed in O(n) time, so the

entire OPM can be constructed in O(n) time. Each shadow boundary and each hyperbola segment of the op-

posite-edge boundary can be represented in O(costant) space. Since the optimal-path tree can be stored in

O(n) space, and assuming constant accuracy, the representation of the entire OPM is O(n) space. (See Figure

17.)

3. Time and Space Complexity of The Single-River-Segment-OPM Algorithm

Algorithm VI-2 constructs boundaries generated by a single river segment. A river segment has ex-

actly two shadow boundaries, at most two river-crossing boundaries, and exactly one river-obstacle boundary

consisting of only one hyperbola segment. Thus there at most five boundaries to construct, each of which can

be constructed in O(constant) time, so the time complexity of the algorithm is 0(constant). Sinilarly, the space

complexity is 0(constant). (See Figure 18.)

4. Time and Space Complexity of The Single-Road-Segment-OPM Algorithm

Algorithm VI-3 constructs boundaries generated by a single road segment. By the analysis of Chap-

ter V, a road segment may have at most fourteen boundaries, each of which can be constructed in 0(constant)

time, using O(constant) space. Thus the time and space complexity of Algorithm VI-3 are both O(constant).

(See Figure 20 and 21.)

5. Time and Space Complexity of The High-Cost-Exterior-Goal-HCA-OPM AMgorithmn

Algorithm VI-4 constructs the planar partition for a region with higher cost than the surrounding ter-

rain with a goal point outside the region. It has exterior boundaries which are similar in number to those

generated by an obstacle, except that there may be as many as three opposite-edge boundaries. Thus, by the

same reasoning as for obstacles, the construction of exterior boundaries has worst-case time and space com-

plexity of O(n).

However, the interior boundaries are more time-consuming in the worst case, because of the ,way

boundaries may intersect. (See Figures 22, 23, 24, 30, 31, and 32.) Each of the n HCA vertices is associated

with an interior botmndary. In the wort case, each pair of these boundaries intersects and a third boundary
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begins at the intersection point, giving n/2 new boundaries, and each pair of new boundaries intersects and

another begins, for n/4 new boundaries at the third level, and so on until a final boundary occurs which con-

nects all the others. In this case, there are n+n/2+n/4+n/8+...+l boundaries. There are in the limit n/(l-1/2) =

2n boundaries.

There does not appear to be a simple way to determine for a boundary which of the two adjacent

boundaries will be paired with iL An iterative check which accomplishes this is outlined in procedure pair-

and-merge.bdrys under Algorithm VI-4, (see Section A4 of Chapter VI and Figure 30). This procedure takes

at worst (in a very pathological case), n-2 passes through the inner ("while PairedBdrySet is changing") loop,

which itself processes n boundaries ("for all Bij..."). The outer ("while BdrySet is changing") loop, which

checks for intersections by newly propagated boundaries with already-paired boundaries, could also take O(n)

passes in the worst case. Thus procedure pair-and-merge-bdrys has worst-case time complexity of O(n 3).

This measure dominates the O(n) ccmplexity of the exterior boundaries, and so the worst-case time complexity

of Algorithm VI-4 is O(n3). The space complexity is O(n) because at most 2n interior boundaries, n-2 shadow

boundaries, and n-2 portions of opposite-edge boundaries exist.

6. Time and Space Complexity of The ligh-Cost-Interior-Goa-HCA-OPM Algorithm

Algorithm VI-5 constructs the OPM for a high-cost HCA with an interior goal point. It has much

lower time complexity than the high-cost, exterior-goal case, because the interior does not have a number of

intersecting boundaries from which more boundaries may emanate. In fact, for each vertex, at most one ex-

terior and four interior boundaries are generated, as well as additional boundaries for each pair of visible edgev

and each interior opposite-edge boundary. Both the exterior visible-edge boundaries and the exterior opposite-

edge boundaries display the same behavior as obstacle opposite-ede boundaries, so that all of them together

have no more than O(n) segments. The only iterative loop in the algorithm is the outer one which processes

each of the nvertices, so the overall worst-case time complexity is O(n), as is the space complexity. (See- Figure

25.)

7. Timb and .qn CnmnltnoThvnalwraat.litorinr..'.nal.iA.AIPM Alunrthm

Algorithm VI-6 constructs the OPM for a HCA of lower cost than the surrounding terrain and an ex-

terior goal. This algorithm generates at most four boundaries per HCA vertex. Although there are interior boun-

daries similar to the high-cost, exterior-goal case where much computing effort was required to construct them,
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in this case they are never mutually intersecting. Thus the entire algorithm has time complexity O(n). The

space complexity is also O(n). (See Figure 27.)

8. Time and Space Complexity of The Low-Cost-Interior-Goal-HCA.OPM Algorithm

Algorithm VI-7 constructs the OPM for a HCA with lower cost than the surrounding terrain, and a

goal inside the HCA. This is the simplest of the four HCA cases, because there are exactly two linear boun-

daries emanating from each HICA vertex. -ibus the time and space complexity is O(n). (See Figure 26.)

9. Time and Space Coplext.y of The Multiple-Connected-River-Segment-OPM Algorithm

Algoris VI-8 constm-cts an OPM for multiple connected river segments. The time complexity of

this algorithm depends on how many "event points" and new boundaries occur at each segment An event point

occurs on a river segment at each place that a boundary intersects it and denotes a point at which the algorithm

must check for a continuation of the boundary on the other side of the segment. Since a river segment's boun-

daries will only intersect river segments in its shadow, the worst-case time complexity happens when the river

"doubles back" on itself. Consider a sequence of connected river segments as in Figure 34. In this example,

the closest two river segments to the goal, and each subsequent pair of segments, are positioned so as to cast

two shadow boundaries which create event points on the next segment. Since in this example, the cost of the

river is so small that each river-crossing boundary begins "outside" any event points on the segment and does

not intersect any shadow boundaries, the shadow boundaries all continue to the next level of river segments.

At the first level, four boundaries begin, and at each subsequent level, there are three new boundaries plus the

continuation of boundaries from previous levels associated with event points. The result is that on each river

segment, say at level i, there are 3i+1 possible boundaries generated. So for a sequence of river segments with

n vertices, it is possible to have .I to ,12 (3i + 1) = 3n2/8 - 7n/4 total boundaries over the entire set. Thus the

wont-case time complexity of .lgorithm VI-8 is O(n2). Since there are 0(n2) boundary segments, the worst-

case space complexity is also O(n2).

10. Time and Space Complexity of The Multiple-Feature-Divide-and-Conquer-OPM Algorithm

Algorithm VI-9is the algorithm which takes OPM's for individual decomposable terrain features and

merges them into one OPM It uses the divide-and-conquer paradigm, and spends O(n) time dividing the map

at each stage of size n, by standard median-finding algorithms from computational geometry. Le! the time

complexity of the algorithm itself be expressed as T(n). Then the recursive application of the algorithm to both
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halves of the map will take 2T(n/2) time. Thus the dividing, recursion, and merging will take T(n) = 0(n) +

2T(n/2) + 0(f(n)), where fRn) is the time complexity of the merge step.

The procedure merge.opms is very similar to procedure pair-and-merge-bdrys associated with Al-

gorithm V-4 for high-cost, exterior-goal HCA OPM's, which joined the interior boundaries and propagated

new ones as needed. It is subject to the same possibility that multiple levels of newly-propagated boundaries

may occur, and has the added complexity that for each boundary truncated in one of the subordinate OPM's,

the procedure intersect-and.merge must be performed to reconstruct any other boundaries which previously

intersected the truncated boundary but no longer do so. By the same reasoning as paragraph 4 above, even as-

suming that procedure intersect-and-merge has 0(constant) worst-case time complexity, procedure merge-

opms operates in 0(n 3) time. In fact, procedure intersect-and-merge operates in 0(n) time in the worst case,

because there are at most 0(n) boundaries which a boundary can possibly intersect. Thus, procedure merge-

opms has worst-case time complexity 0(n4). We note also that the base case of the recursion requires the solu-

tion of a single-terrain-feature algorithm, which may have as much as 0(n3) time complexity. Thus the

worst-case time complexity of the entire algorithm may be stated as T(n) <0(n) + 2T(n/2) + 0(n4), or

T(n) 2T(n/2) + 0(n4)

forT(l) : 0(m3), where m is the largest number of terrain-feature vertices which occur in a high-cost, ex-

terior-goal HCA. Expanding this recurrence relation, gives, by induction on the depth i of the recursion, that

for some constant ci,

T(n) 2'T(O/2i) + cmnI(l _ 1/23(i.1).

Let n = 2 k, assuming that k is an integer. Then at the last splitting step, i=k, and we have that

T(n) 2"T(1) + cIn 4(1 - 1/2(k').

But for the base case, we have that T(1) < c2m 3 for some constant c2, so

T(n) : 2kc 2m3 + cIn'(1 - 1l23(k I))

T(n) c2nm 3 + cIn4 - 8 cIn.

Since m 5 n, Algorithm VI-9 has worst-case time complexity T(n) = 0(n4).
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C. EMPIRICAL PERFORMANCE OF THE ALGORITHM IMPLEMENTATION

The high-cost, exterior-goal case, was implemented as a proof-of-concept program. The high-cost, ex-

terior-goal HCA was chosen because it was the most complex of the seven cases and incorporated most of the

types of boundaries. The implementation was not intended to be particularly efficient, but was primarily

designed to corroborate the shapes of various boundaries when compared with multiple runs of a point-to-

point weighted-region path-planning implementation by Richbourg [Ref, 21]. Figures 22, 23, and 24 repre-

sent results of the OPM implementation overlaid on vectors representing the initial directions of a dense

sampling of optimal paths from Richbourg's "Snell's Law" program. OPMs of fairly simple complexity such

as the above three figures took four to six minutes apiece to construct, not counting the time necessary to find

optimal paths from each terrain-feature vertex using Richbourg's point-to-point path-planner [Ref. 21]. This

implementation was done in C-Prolog on a VAX 11/185 running under BSD 4.3 Unix.
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VIII. CONCLUSIONS

A. GENERAL

In this research we developed two approaches to the construction of a planar partition for optimal-path

maps (OPM). The first is an extension of the grid-based wavefrontpropagation algorithm for point-to-point

path planning, for which we implemented and analyzed three versions. The second is based on spatial reason-

ing about how optimal paths behave in the presence of terrain features, leading to a divide-and-conquer algo-

rithm. We assume that paths lie in free terrain consisting of five types of regions: hociogeneous-cost

background, convex polygonal obstacles, piecewise-linear rivers with a fixed crossing cost, piecewise-linear

roads with a constant cost-rate, and convex homogeneous-cost areas. Additionally, we assume that no two fea-

tures sham a vertex. We assume that the mobile agent is of negligible 3ize with respect to the surrounding ter-

rain, and that the terrain is fixed and known.

Point-to-point path-plam~ng algorithms require anywhere from O(n2 log n) time for binary terrain

(visibility-graph methods [Ref. 1]) to O(n7L) time forhomogeneous-cost areas (continuous-Diptra algorithm

[Ref. 151), where n is the number of termin-feature vertices and L is a measure of the precision of the problem

repit.entation. One way to decrease the amount of rim-time complexity of path-planning at the expense of in-

cremed preprocessing time and increaed storg requirem is to construct optimal-path maps (OPM) which

grou optimal paths from all stam points on a map with respect to a goal point by partitioning the plane into

regions whose paths behave similarly. At rn-time standard point-location tecmiques from computational

geomeity can be used to locate a start point in a region of the OPM in O(log n) time, and the optimal path can

be reconstructed based on the known behavior of patr in the region.

3. COMPARISON OF WAVEFRONT.FROPAGATION TO SPATIAL. REASONING

APPROACHES TO OPM CONSTRUCTION

The spatial reasoning approach to optimal-path-map congruction is clearly preferable to wavefront

propagation for applications requiring low error in the cost of the solution path compared with the cost of the

actual optimal path. Otherwise, the wavefront-propagation approach using the diverging-path version seems
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preferable because it does not depend on the labeling of vertex or edge cells, and is simpler than the exact al-

gorithin, when the cost of constructing the optimal-path tree is included. The most accurate wavefront-propaga-

tion OPM algorithm, the vertex-edge version, requires an additional preprocessing phase which fits polygons

to grid-based terrain features and assigns vertex and edge labels to cells. This terrain preprocessing is also

necessary in the spatial-reasoning approach used on large-scale cross-country terrain data, because Defense

Mapping Agency provides datain the form of25 meteror 12.5 metersquare grid cells from which the polygonal

terrain features of the spatial-reasoning approach must be derived. Since implementation ofwavefront propaga-

tion is simpler than the exrct-OPM divide-and-conquer algorithm, it may be preferable in applications which

can afford the 7.6% inaccuracy to use the vertex-edge version of wavefront propagation.

While wavefront propagation would seem to be preferable if accuracy is not a factor, it should be noted

that the complexity of wavefimot propagation is based on the number of cells in the input map, not the num-

ber of terrain-feature vertices, so the two time complexity measures are not precisely comparable. However,

for a grid-bame.d map of O(m) cells, with a corresponding polygonal map of v vertices, if it could be said that

the frequency with which a cell includes a vertex would be constant as the size of the map increased, v would

increas linearly as a function of m. By this reasoning, we could expect a typical polygonal map for a grid with

m cells to have O(m) vertices, so the measures are approximately comparable.

Actual average perfogmtnce could give different results from worst-case analysis. Since the spatial-

reasoning-OPM divide-and-conquer algorithm was implemented only for one of the seven cases as a test-of-

concept instrument, actual performance tests of the exact-OPM algorithm were not possible.

C. USEFULNESS OF THE OPM APPROACH TO PATH PLANNING

Since the OPM approach to path planning trades pieprocessing time and incmeased storage for improve(.

speed at run-time, it will be useful in applications which require real-time response to a path-planning query,

such as autonomous-vehicle or missile path-plamning, or where multiple queries over the same terrain are ex-

pected, for example, in a terrain-analysis decision aid for tactical military units.

Two major objections to the OPM approach are its preprocessing time and its storage requirements. Cer-

tainly preprocssing will take longer than current path-plmning methods. However, the non-automated sp-

proach to terrain navigation in many domains, which has been to prepare paper maps well ahead of time for
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distribution to users, could serve as a model for OPM preprocessing, wherein an organization such as Defense

Mapping Agency could devote centralized resources to the preprocessing phase and distribute standard OPM

databases so that field units or vehicles would have to devote resources only to the run-time phase.

A second objection to the OPM approach is the need for increased storage. However, the cost and com-

pactness of storage media is constantly being reduced by research and development efforls. OPM databases

could be recorded on optical disks or "digital paper", allowing space for a whole array of OPMs covering an

approximation of the four-dimensional solution for a given geographical area. A typical OPM for an area of

20 by 20 kilometers might include on the order of 800,000 boundary segments (100 vertices per square

kilometer times 400 square kilometers giving on the order of 40,000 boundaries, times 20 segments per bound-

ary), each requiring two points of two coordinates each, or 3.2 megabytes of storage. For a four-dimensional

array of OPM's representing all optimal paths from any start point to a sampling of perhaps 10 goal points per

square kilometer, or 4,000 OPMs, 12.8 gigabytes would be required. As of 1989, 5-1/4-inch disks using digi-

tal-paper technology are commercially available which store I gigabyte each [Ref. 45]. The approximately

thirteen such disks needed to store a full set of OPMs would be easily transportable. A library of OPMs for

various potential areas of operation could be maintained, for example, much as libraries of paper maps are

maintained.

D. AREAS FOR ADDITIONAL RESEARCH

The terrain types assumed herein do not include non-convex polygons, even though much real-world ter-

rain would be difficult to model accurately without them. Thus, it is important to determine how to incorporate

non-convex polygons into the optimal-path map algorithms presented. With the unifying view of regions and

boundaries based on region cost functions, this task seems attainable with additional research.

The boundary between regions where one or both regi ns have paths which aom multiple Snell's-Law

edges en route to a region root which is a point has not been characterized analytically. In the current algo-

ritlun, it is proposed that such boundaries be approximated by hyperbolas, and it is thought (without proof)

that such an approximation ftroduces very little error. However, a better approximation could be used tp in-

tersect with other cost functions to determine boundaries on a much less ad hoc basis than is done in this dis-

sertation.
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One specific place in which improvement in efficiency could have great effect on the overall exact-OPM

algorithm is in constructing the interior boundaries of an exterior-goal, high-cost HCA in less than O(n4) time.

OPM's for all six other primitive terrain-features can be constructed in 0(n) or less time, and for multiple con-

nected river segments in O(n ) time, and it is this single case which drives the divide-and-conquer algorithm's

worst-case time complexity to 0(n4 . In addition, a merge procedure for the exact-OPM divide-and-conquer

algorithm which had efficiency more in line with that of Voronoi diagram construction would improve over-

all performance.

A four-dimensional solution is needed in order to make the OPM approach useful in most domains. The

solution consistent with the approach herein is to create multiple OPM's for a sampling of goal points in the

plane, and then choose the OPM to use at run-time based on the proximity of the query goal point to the goal

point of one of the OPM's. Perhaps more efficient methods exist which would characterize boundaries be-

tween four-dimensional regions in a space of all start and goal points, a conceptual generalization of the two-

dimensional solutions reported here for start points and a fixed goal. In other words, the four-dimensional

hyperplane would be partitioned into regions whose paths were similar.

It would be very instructive, as wel as practical, to implement a complete two-dimensional path-plan-

ning system, from construction of a optimal-path tree for the four types of terrain used herein through OPM

construction, and including a run-time sys:em to accomplish point location and path reconstruction.
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APPENDIX A - THEOREMS

A. OVERVIEW

In this appendix the theorems which form the basis of the research reported herein are presented, along

with associated lemmas, corollaries, and fundamental assumptions. The theorems follow in the same order in

which they are discussed in the body of this report, and are numbered by chapter and theorem. Lemmas and

corollaries are numbered as extensions of the theorem to which they apply. First, some notation used in this

appendix and throughout the report is presented. Then three theorems anda fundamental assumption with three

associated corollaries are presented which provide a theoretical foundation for the discussions of Chapter I.

Next six theorems are presented which state the basic boundary equations as developed by the unifying view

of region cost functions. Seven theorems from Chapter V, one for each of the three terrain-feature types

obstacle, road segment, and river segment, and four for the four cases of the homogeneous-cost area, are

presented. The definition of homogeneous-behavior region used in this appendix is the set of all points whose

optimal paths have the same path list.

B. NOTATION

The following notation is introduced for use with respect to path-planning.

P A point in Euclidean n-space.

M The straight-line segment from P to Q
(PQ) A feasible path from P to Q

(P) Theith fusible pah from P to Q

(PQ) Optimal path from P to Q

OPL(P) Optimal-path list (sequence of edges and vertices encountere) of P.

OPL(P) = [PQIOPL(Q)] The path list from P through Q shown in Prolog-style list notation

(i.e., lists are enclosed in braces, commas separate elements, and the

entry following a vertical line ("I") is the "reW" of the list).

I(PQ~it The cost (weighted distance) from P to Q via path (PQ)i.

d(P,Q) The Euclidean distance between P and Q.

((PQ)i(QR)j) A feasible path from P through Q to R.
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(PQ,\ic ((PQ~I(QR)j) Set notation applies to paths as if to their path lists, treating them as
(QPXi cZ ((PO-\i(QR)j) ordered sets, e.g., (PQ)j is a sub-path of ((PQiQR)j), but

(QP)i is not a sub-path of((PQ)i(QR)j).
P e (PO~i Points are considered elements of paths.

MP = (RS)1 iff (PQXiC (RS)j and (RS)Q (POJ Two paths are equal if Vk, thek 1

elements of the path lists of the two paths are the same.

Cpq The cost (weighted distance) of a path from point P to point Q
ri The cost rate in region i.

01 Angle ef incidence or refraction of a path across a S neil's-Law edge.
A= sin7NrI/z) Critical angle with respect to a Snell's-Law edge separating

regions of cost-rates ri and 12, where ri <12.

VAGB The characteristic wedge with vertex at G and edges through A and B.
This is defined with respect to road segments such that G is the goal
point, A and B are points on the line of the road segment, ray GA forms

angle2I+ y with the segment, and my GB forms anangle 7r/2 - 4f
with the segment, where Ni is the critical angle as defined above.

C. BASIC THEOREMS

THEOREM I-1.Given optimal path (AB), VP r= (AB)*, (PBXi = (PB)* if (PB)X C (AB)*, i.e., any sub-

path of an optimal path is also an optimal path. MTe generalization of this concept is known in some contexts

as the principle of opdmality, the dynamic programmiag principle, or the Markovian property [Ref. 46].)

PROOF I-1:(Proof by Contradiction) Given points A and B and path (AB)i - (AB)* such that KAB)*I - ,

pointsPand Qsuch thatP e (AB)*andQe= (AB)*, where paths (AP), (PQ) and (QB) are such that

((APX(PQ)(QB)) - (AB)* with I(PQ)(QB)I = ci, and Q' 0t (AB)*. (See Figure 35.)

Assume 3 KPQ) and (Q'B) such that K(PQXQ'B))I = ci', and cl'< ci. Then 3 (AB)2 - ((APXPQXQ)B

.---aYchthaKAB)21c*-cl+cl'.. But eciclc'<c* ,so KAB)21 < KAB)I[, which contradicts the op-

timality of AB).

THEOREM 1-2. In terain consisting of a homogenu-cost background on which is placed homogeneo us-

cost polygons, optimal paths change directions only at terrain feative vertices and edges. Note that the terrain

defined in Chapter 1I, Section E, are specializations of this type of terain. (See Figure 36.)
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PROOF 1-2: Consider point X on optimal path (AB)*, with F (AB)* and Q G (AB)* arbitrarily close to X

such that ((PX)(XQ)) C (AB)*, i.e., P and Q are on opposite sides of X on path (AB)*. Assume P, X, and Q

are not colinear (i.e., X is a turn-point). Among terrain consisting of line segments and polygons, P and Q can

be made close enough to X so that there are only four possible placements of P, X, and Q:

(1) P, X, and Q are in artas of equal cost, X is not coincident with a terrain feature vertex, and line

segment 1- does not intersect any terrain feature edge.

(2) P, X, and Q are in areas of equal cost, and X is coincident with a terrain feature vertex.

(3) X is in an area of equal cost with either P or Q, but not both. Assume without loss of generality

that P and X are in an area of cost ri and Q is in an Ajacent area of cost . Additionally, X is not

on a terrain feature edge, (PX) do. not cross any edges, and (XQ) crosses exactly one edge, the

edge between the two areas of concern.

(4) X is on the terrain feature edge separating an area of cost rt of w'ich P is a member and adjacent

area of cost r2 of which Q is a member. Addidionnlly, neither (PX) nor (XQ) cross ar.y other edges.

Assume case 1. ((PX)(XQ)) = (WQ)* by the principle of optimality. So :(PX); + IXQ) < IPQk, because

of the optimality of ((P.X)(XQ)) (i.e., the cost from P to Q via X is less L-an thi Su;aight-,.ie m from P to Q).

So it is also true that I(PX)Vr + !(XQ)lI/r IiP r. Now VR and S, the Euclidean disance beween R and

S is less than or eqiml to the distatce along any general path between R and S. So 1%0XIr IPXl/r ana

I(XQ)IV. > IXQIVr. (By the notatonal convention that i(RS)I is the weighted distance, or cost, between .Znd

S, l(R$)l/r is the Euclidean distance of (RS) if (RS) lies entirely in an area of cost rate r.) Therefore IPXI/r +

iXQIVr RP. But sincz P, X, and Q are not collinear, this violates the triangle inequality, so case 1 is not:

possible.

It is clea . by example. that case 2 is ossible. Considet X coincident with the comer of a reemn-mlar

obstacle 0, with P and Q not inervisible, but closer to X than to any other vertex of 0. (PX XQ) . (PQ)" in

this case, demonstrting that case 2 is possible, i.e., &.at optimal paths may turn at terrain-feature vertices.
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Assume case 3. Let Y be the point at which (XQ) crosses the edge. Then by the same reasoning as for

case I above, it is contradicted that P, X, and Y are not collinear, i.e., X is not a turn-point, so case 3 is not

possible.

Richbourg [Ref. 20] proves the applicability of Snell's Law to describe the angles of incidence and refrac-

tion of an optimal path across an edge as in case 4, demonstrating that this case is possible, i.e., that optimal

paths may turn as they cross terrain-feature edges.

Thus the only turn-points in optimal paths in terrain consisting of homogeneous-cost polygons on a

homogeneous-cost background are coincident with terrain feature vertices or edges.+

ASSUMPTION 1-3, General-Position Assumption: No terrain-feature vertex or edge interior lies on a non-

trivial homogeneous-behavior-region boundary, i.e., a homogeneous-behavior boundary other than those of

the homogeneous-behavior region of which the vertex or edge is the root, or the terrain-feature edges inci-

dent upon the vertex or edge.

COROLLARY I-3.1:There is a unique optimal path from each terrain-feature vertex and edge interior.

PROOF 1-3.1: (Proof by Contradiction) Assume that there were two optimal paths from a terrain-feature ver-

tex or edge interior. Then the vertex or edge would lie on a non-trivial boundary, by the definition of a bound-

ary. But this contradicts Assumption 1-3.+

COROLLARY 1-3.2: There is a unique homogeneous-behavior region root associated with each

homogeneous-behavior region, where a region root is the first vertex or edge crossed by optimal paths which

start in the region.
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PROOF 1-3.2: From the definition of a homogeneous-behavior region as the set of points whose optimal paths

to a goal point have the same path list, the path lists from all start-points in a region are identical, so the first

elements of the path lists are also identical. Thus there is only one root per homogeneous-behavior region. As-

sume there existed two homogeneous-behavior regions which shared the same root. Since a region consists of

all points with identical optimal-path lists, then 30PLi = [EliResti] and3OPL2 = [El[Rest2] such that Resti

# Rest2. By the definition of a bourdary, El would thus be on the boundary between region 1 and region 2.

By Theorem 1-2, El must be a terrain-feature vertex or edge, but this contradicts the general-position assump-

tion. Thus there is only one homogeneous-behavior region per root. *

DEFINITION I-33:A region R is star-shaped if3P r R such that VQ e R and VX E P&, X e R.

COROLLARY I-3.4:Homogeneous-behavior regions are star-shaped with respect to their region roots.

PROOF 1-3.4: By the definition of a homogeneous-behavior region, all start-points in the region have the

same optimal-path list, with, by the definition of a region root, the same first element. By Theorem 1-2, the

optimal path from each start-point to theroot is a straight line segment. By the Theorem I-1, all points along

the line segment have optimal paths lying along the line segment, so sharing the first element of their optimal-

- path lists as well, and so by Corollary 1-3.1 sharing optimal-path lists. Thus all points along each such line seg-

ment lie in the same homogeneous-behavior region. *

THEOREM 1-4: Given a two-dimensional map of a finite number of linear and polygonal terrain features

and a goal-point. it has a unique optimal.path tree.

:'PROOF I-4:Given a two-dimensional map Mof linear and polygonal terrain features and a goal G, each point

S in M either has an optimal path, i.e., the feasible path of minimum cost, or else has no feasible path to G. If

it has an ontimni mlzh then iv the nitinn nf stn ,ti msil-nth fic ain Te-I..m 1-7 it kna hsm an nr.imnl-

path list. If it has no feasible path, it is associated by convention with the optimal-path list [I,G], where [] rc-

resents the null list. Define the relation R = ((Pt,P2) I OPL(Pt) = OPL(P2)), i.e., two points are related by R
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if and only if their optimal-path lists are identical. Since identity is an equivalence relation, so is R, so R com-

pletely partitions the plane into sets of points with identical optimal-path lists. Since this is the definition of a

homogeneous-behavior region, the plane is completely partitioned into homogeneous-behavior regions. Since

there are a finite number of terrain-feature vertices and edges, there are a finite number of homogeneous-be-

havior regions.

A directed acyclic graph can be used to represent a partial order ar..jng its nodes [Ref. 36]. A partial order

of a set S is a binary relation U such thatV a E S, aUa is false, i.e., U is irreflexive, and Va, b, and c S,

if aUb and bUc, then aUc, i.e., U is transitive. [Ref. 36] The set of all homogeneous-behavior regions in map

M is partially ordered by their optimal-path lists as follows. Let U = ((PIP2) I Pi cP 2), i.e, optimal-path list

P- precedes optimal-path list P2 in the partial order if Pi is a proper subset of P2. Because the relation "proper

subset" induces a partial order on a set whose elements are sets, the relation U also induces a partial order on

the set of optimal-path lists, and hence on the set of homogeneous-behavior regions, of map M with respect

to goal G. In fact, because of the uniqueness of optimal-path lists from region roots, a specialization of the

directed acyclic graph, the tree, may be used to represent the partial order of homogeneous-behavior regions.

We call this tree an optimal-path tree, because it represents the optimal paths of map M.

Now consider the homogeneous-behavior regions in M with optimal-path lists consisting of only one ele-

ment. Since all optimal-path lirts for optimal paths to G have by definition the point G as their last poht, and

by the definition of homogeneo!is-behavior regions as the set of points wlth identical optimal-path lists, there

is only one iegion with a single element in its optimal-path list, the region with the optimal-path list [G, and

(G] is a subset of all other optimal-path lists. Thus [G] precedes all other optimal-path lists in the partial order,

and so is the root of optimal-path tree TM.G, the optimal-path tree associated with map M with respect to goal

point G.*
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D. PROOFS FOR BASIC BOUNDARY EQUATIONS

7,A JEOREM V-0.1: (Boundary between two regions with vaths which go initially to two different points)

Given goal point G and two adjacent homogeneous-behavior regions of cost rate r whose region roots are

points V1 and V2, costs cl = I(VIG)*I and c2 = I(V2G)*I (the costs of optimal paths from Vi and V2 respec-

tively) where without loss of generality it is assumed that c2 > ci, the boundary between regions 1 and 2 is a

portion of the hyperbola branch which is closer to V2 than to V, and is described by

(Equation 1) X 2 
- = C2

where a = (c2 - ci)[2, c = r d(Vi,V2), and b2 = c2 - a2, and where the x-axis is oriented along the line segment

VIV2 with the origin at a point half-way between V1 and V2.

PROOF V-0.1: (See Figure 37.) By the definition of a homogeneous-behavior region, points in region I all

have the same path list, whose first element is V1. Thus the first leg of an optimal path from any point P in

region 1 is PV'i. Similarly, the first leg from any point P in region 2 is PV. The boundary between regions 1

and 2 is the set of points P such that cl + (PV11 = c2 + IPV21. Therefore PVI1 - [PV2J = c2 - ci. From basic

analytical geometry, the set of points with constant absolute difference of distances from two foci is a hyper-

bola. Since the above equation describes the signed difference of the two distances, it represents one branch

of the I'yperbola, the branch such that IPViI > PVJ. Thus the branch on which P lies is closer to V2 (the ver-

tex with the higher-cost optimal path) than to Vi.

THEOREM V-0.2: (Boundary between a region with paths which go initially to a point, and a region with

paths which go to and travel along a linearly-traversed-edge, or "road") Given goal point G and two adjacent

homogeneous-behavior regions with cost-rate ro, one region having point U as root and the other having linear-

ly-traversed edge VW as root, where VW is a sub-segment of some terrain-feature edge such that OPL(V) =

[W I OPL(W)] and the cost-rate along the edge is rvw, (for example, a road segment where paths leave the road

from point W), the boundary between them is a portion of the curve

162



Y-axis Region1

Region 2

frv

cost 16
G Q.0 C 

y f} " < ~ ' .

//Cott 

to

Goal

HBOogedcuBetween 
io Rcgions with Point Roots

163



(Equation 2) y2 = 4 p x,

where p is defined as follows. From W extend a ray WWd away from region 2 (i.e., no point on WWd lies in

region 2) such that ZVWWd = r2 + 4f, and the distance between W and Wd is (Cw - Cu)/ro. Let point Ud be

the point such that line UUd is parallel to WWd, and the line UdWd is perpendicular to line UUd. Let point 0

be the point on line UUd equidistant between U and Ud. Then the coordinate axes are the line UUd (x-axis with

U in the positive x direction) and the line through 0 parallel to UdWd (y-axis with Wd in negative y direction),

and p = (cw - cu)/ro, where IV = sint (rvw/ro) is the critical angle, cw = I(WG)*I, and cu = I(UG)*I (the costs

of optimal paths to goal point G from W and U respectively). Note that the x-axis is the parabola axis and the

line UdWd is the directrix.

PROOF V-0.2: (See Figure 38.) The boundary between regions 1 and 2 is the set of points P such that the

cost of optimal paths which go through U and through W are the same. The optimal path through U begins

with the line segment PU and continues with (UG)* and has total cost cu, while the optimal path through W

starts with the line segment PQ at cost-rate ro, where Q is a point on VW between V and W inclusive, con-

tinues along line segment QW at cost-rate rvw, and ends with path (WG)* with total cost Cw. Thus, the bou'nd-

ary is described by the equation ro d(P,U) + cu = ro d(PQ) + rvwd(QW) + Cw, or rearranging terms, d(PU) =

d(P,Q) + sinVf d(QW) + (cw - cu)/ro. Now ZPQW = rt/2 + f for a road, as shown by Rowe (Ref. 2]. Ex-

tending the line T to point Pd, as Figure 38 shows, the right-hand side of the above equation is the straight-

line distance from P to Pd. Let line D lie per dicular to PQ, through Pd. By Figure 38, line D is a distance

(cw - Cu)ro from W. Thus, the above equation states that P is equidistant from point U and line D, the defini-

tion of a parabola with the form of Equation 2, where the coordinate axes are the lines UUd and D as shown,

and p is half the distance from U to Ud.*

THEOREM V-O.3:(Boundarybetween regions having paths which go to and travel along two different linear-

ly-traversed edges, or "roads") Uiven goal point G and two adjacent homogeneous-behavior regions with cost-

rate ro, one region having linearly-traversed edge XY as root and the other having linearly-traversed edge VW

as root, where XY and VW are sub-segments of terrain-feature edges such that OPL(X) = Y i OPL(1)],
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OPL(V) = [W I OPL(W)] and the cost-rates along the edges are rxy and rvw respectively, (for example, two

road segments where paths leave road XY from point Y or leave road VW at point W), the boundary between

them is a segment of line L defined as follows. Let Dxy be the line which forms angle Nfxy with line XY, is

distance Cy from point Y, and lies on the side of XY which does not include the region of which XY is the

root. Let Dvw be the line which forms angle VJvw with line VW, is distance Cw from point W, anc -ies on the

side of VW which does not include the region of which VW is the root. Let Po be the point of intersection of

Dzy and Dvw, and let Cc be the angle between line XY and line VW. Then the boundary lies on line L, which

is the line through point Po which lies at an angle (at + Vvw + 'Ixy)/2 with both Dxy and Dvw.

PROOF V-0.3:(See Figure 39) Consider the set of points P with two optimal paths, OPLi = [QI, Y I OPL(Y)],

and OPL2 = [Q2, W I OPL(W)], where Q1 and Q2 are the points at which the paths first enter edges XY and

VW respectively. The cost of OPLi is ro d(P,Qi) + sin(lvxyd(QIY) + cy and the cost of OPL2 is ro d(P,Q2) +

sinNfwd(Q2,W) + cw. By Figure 39, these are the perpendicular distances of P from two lines Dxy and Dvw,

defined as follows. Dy is the line which forms angle Vxy with XY, is distance Cy from point Y, and lies on

the opposite side of XY from the region of which XY is the root. Dvw is the line which forms angle '4fvw

with VW, is distance cw from point W, and lies on the opposite side of VW from the region of which VW is

the root. From analytic geometry, a set of points equidistant from two lines is a line. The point Po, where Dxy

and Dvw intersect, is distance zero from both lines, and so lies on line L which includes the boundary. By basic

plane geometry, the line equidistant from two intersecting lines is the line which bisects the angle between

them. The angle between Dxy and Dvw is (t + 4fxy + 4vw), so that line L forms angle (a + VXy + Nivw)/2

with both Dxy and Dvw. *

-THEOREM V-0.4: (Boundary between two regions having paths which cross two different edges.) Given

goal point G and two adjacent homogeneous-behavior regions with cost-rate ro, one region having Snell's-

Law edge VW and the other having Snell's-Law edge XY, where paths which cross VW go directly to point

* at cost-rate rvw, paths which cross XY go diectiy to point Z at cost-rate rxy, and where the total cost from

U to the goal is cu and from Z to the goal is Cz, the boundary between them consists of points P such that the
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distance from P to edge VW is x2, the distance from VW to U is xi, the distance from point P to edge XY is

Y2, and the distance from TY to Z is yi, where the seven equations of Equation Set 4 are satisfied.

(Equation Set 4) di sin'Y do sinf3
Xl = cosOl ' y cos03

docos(03- j) dcos(Oi-Vcos(04 + )

Y2 sin ( d coS( l ) Qos( 2 + _ _ _ _ __cos 2 "COS O .s 4Y2 = nU- COS01 " COW0 C00~2 + G 7.S(134 + a)'
C0SU2 C0SU4

do sinafcos(03 -0) -dtcos(O - 4)cos (Q4 + O
X2o-O CO3 " O UosO os04

(2:COS(U2 + g COS(e4 + a
= ( 1 -COsU4

Boundary Condition: rvwXl + TOX2 = rxyyl + roy2

Snell's Law for edge VW: rmsin0i = rosin02

Snell's Law for edge XY: rxysin03 = rosin04

where do, di, a, P, and ̂ Iare constants as shown in Figure 40, xI, x2, Yh and y2 are distances, and Bi and 03

are the dependent and independent variables.

PROOF V-4: (See Figure 40.) Given two adjacent r.gions with point P on their boundary, and given that

the optimal paths from region I cross edge VW obeying Snell's Law, and then go through point U en route to

the goal, and that optimal paths from region 2 cross edge XY obeying Snell's Law, and then go through point

Z en route to the goal, with coss as shown, the boundary condition is

(4-1) rvwxI + rOx2 = ryYt + r0y2.

The Snl's-Law conditions across edges VW and XY are

(4-2) rwsin0i = rosinO2 and rxysin03 = MinO4.
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Applying trigonometric identities to the triangles UQII and ZQ2I gives the following for xi and yi.
(4-3) di sin ( do sin3

xi = cosOt ' (0-4) y cos03

The law of sines applied to AUQII gives that

(4-5) d2 = ISin( 01 -
d2 = si~.sin

Substituting the expression for xi in equation 4-3 into 4-5 gives

(4-6 d2 = di cos(%i -
eoset

The law of sines applied to AZQ21 gives

(4-7) 13 = YI COs(03 -)d3 = sino

Substituting for the expression for yi in Equation 4-4 into 4-7 gives

(4-8) d3 = do cos(03 - 3)
cos'oh

Appl;'-ng trigonomet-ic identities to the right triangle whose hypotenuse is the line segment PQI gives

(4-9) x s,!)sO2 = d3sina - y2cos(G4 + a).

Subsuiuting the expression for d3 in Equatian 4-8 into Equation 4.9 gives

(4-10) docos( Is - 13)sirL eOs(C4 + a)
.2 COS3 COS 02 cOs02
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Applying trigonometric identities to the right triangle whose hypotenuse is the line segment PQi gives

(4-11) y2cosO4 = d2ina - x2cos(02 + /,).

Substituting the expression for d2 in Equation 4-6 into Equation 4-11 gives

(4-12) 2 dtcos(Oi - 7)sino , cos(02 + 0)

COS01 COS 04 COS04

Substituting the expression fory2 in Equation 4-12 into Equation 4-10 and simplifying gives

(4-13) do SinOCcos(03 - dicos(0 -I cos (04 + 00
COs02 COS(03  COSt. COsU4X-, = -(cos(02 + CC) cos(0, + 0)

COSU2 COSU4

Substituting the expression for x2, in Equation 4-13 into Equation 4-12 and simplifying gives

(4-14) dOCOS(3 - P) di i d -cos(e4 + a.)
Y2 sinO , dlcos(Oi -y. cos(0, + Z) coO2 cosUIcoSU4 )

y2 = - o _ 2 - cos(02 +a)cos(04+ a)
COS02 

COS04.

Equations 4-1, 4-2, 4-3, 4-4, 4-13, and 4-14 are exactly Equation Set 4. 01 and 03 must be iteratively set and

the results of the first four equations checked in the boundary-condition equation, since there is no known

closed form for Equation Set 4. The angles 02 and 04 are determined by the Snell's Law relations. *
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THEOREM V-O.5:(Boundary between a region with paths which go to and travel along a linearly-traversed

edge ("road") anda region with paths which cross an edge) Given goal pointG and two adjacenthomogeneous-

behavior regions with cost-rate ro, one region having linearly .traversed edge VW as root, and the other having

as root Snell's-Law edge XY, where VW is a sub-segment of some terrain-feature edge such that OPL(V) =

[W I OPL(W)I and the cost-rate along the edge is rvw, (for example, a road segment where paths leave the road

from point W), ard where paths which cross XY go directly to point Z at cost-ratm rxy, and where the total cost

from W to the gc' is cw, and from Z to the goal is c., The boundary between the regions consists of points P

such that the six equations of Equation Set 5 zre satisfied.

dsnP . sin0a .es '+ a) +dsin't

(Equation Set 5) y d3 si _ sxna cos+ d2co- 2
co;pI COSz 2 2 in

= d2(cos(02 + 4(rosin0 -rv,,.os02) + rosiny cos(02 -a))
X2 ~sin(2.a-ly)rv .osU2-'rCOs(02 - a)(SL(f2-t-'N)+r(cOs02+cos( 2 - a)))

'3cos2(rosinacos 3+ r.,vsinf3cos(02 -U)) + (Cz - c w);os02cos0V- a)
sin(e2.CC-V)r,,cosa2+rocos(32 - Oa)(sin(e2-aX- )t+roGcos2Cs(02 - ai)))

x, = s0ne-CrI) - 1)) (d2cos(O I'+d3cosj3cos02)

r wcosO2 + rocos(l,02-c)( z+cos( - X)

drrosiys- d( I 2O 2 rsiCOs0)

d in' d3% c os 202+ rysinPcos2) + (cz - cw)eos02

rv.cos02 + rocos(02 - ina()-:) C)

Snell's Law condition for edge XY: rxy sinet = ro sin02

Snell's Law condition for edge VW: sinW= r,,, / ro
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PROOF V-0.S:(See Figure 41.) Given two adjacent regions with point P on their boundary, and given that

the optimal paths from region I go directly to edge VW and travel along it to point W, and that optimal paths

from region 2 cross edge XY obeying Snell's Law, and then go through point Z en route to the goal, with costs

as shown in Figure 4 1, the boundary condition is

CrY2 + rxyYI + Cz = CrX2 + rvwxI + Cw.

At the two edges, the Snell's-Law conditions are

cvsin6z = rxysin0i

and sin =rvw/cr

The same type of trigonometric and algebraic reasoning used in Proof V-O.4 leads to the equations listed in

Equation Set 5. Since there is no closed-form expression for the boundary, an approximation is computed using

a finite number of points. The procedure for plotting a point on the boundary is to st O, use the first Snell's-

Law condition to solve for 02, and then solve for xi and X2. *

THEOREM V.0.6: (Boundary between two regions each having paths which cross two edges) Given goal

point G and two adjacent homogeneous-behavior regions with cost-rate ro, one region having Snell's-Law

edge VW and the other having Snell's-Law edge RS, where paths which cross VW go from there at cost-rate

rvw directly to a Snell's-Law crossing at edge XY, and then go at cost-rate rxy directly to point ZI. paths which

cross RS go from there at cost-rate rrs directly to a Snell's-.Law crossing at edge TU, and then go at cost-rate

rtu directly to point Z2, and where total cost from ZI to the goal is -. and from Z2 to the goal is c2, the bound-

ary betveen them consists of points P such that the path distnce from P to edge VW is y3, the path distance

from VW to XY is y2, the path distance from XY to point P is y, the path distance from point P to edge RS

is X3, the path distance from R to TU it; x2, and the path distance. from TU to Z. is xi, where the fourteen

equations of Equation Set 6 are satisfied.
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(Equation Set 6)xt nco d5 =COS8 cosol

sinc(3 r d dcos(02 - 08)) sinat tl dscos( t-0)

X2 = (0 ---- Y O ) y2 = c coso1-01)

-Cs6 + cos07 Os)cos0 ,
x3 =- C:o(0s cL4 )(d) - + ,.~i

sin ) dtcos 02 d dos(- - )os02

y3 COS(U4 - Yl) c0SU3 cosul /

d3 - d4 cos0+ dscos(02- 08)COs04
cos(04 -'1) =sin06 COSU8
cos(5 + Ct4 + 'fl) d3 - d4 coSU7 + d7co02 -08)cos07

sin06 COS 8

Boundary Condition: roy3 + rvwy2 + rxyyl = roX3 + rrsX2 + rWxI

Snell's Law: rvwsin02 = rxysin0lI rosin04 = rvwsin03

rnsin07 = rwsin08 rosin0s = rsin6

Trigonometric Identities: 03 = al - 02 06 = a3 - 07

PROOF V-0.6: (See Figure 42.) Given two adjacent regions with point P on their boundary, and given that

the optimal paths from region 1 cross edge VW obeying Snell's Law, then go straight to edge XY and cross

it obeying Snell's Law, and then go through point Z1 en route to the goal, and that optimal paths from region

2 cross edge RS obeying Snell's Law, then go straight to edgeIJ and cross it obeying Snell's Law, and then

go through point Z2 en route to the' ,oal, with costs as shown in Figure 42, the boundary condition is

roy3 + rvwy2 + rxyyl = rox3 + rrsx2 + rtux1.
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At each edge, the Snell's-Law conditions are

rvwsinO2 = rxysin0i

rosin04 - rvwsin03

rsin07 = rtsin98

rosinO5 rrssin06.

Trigonometric identities applied to AVIPIP 2 and AV2P3P4 give the relations

03=al -02 and

06=c3-07.

Applying to the diagram of Figure 42 th same type of tigonometric and algebraic reasoning used in Proof

V-0.4 leads to :he equations listed in Equation Set 6. By solving for 01 md 0s, a point Pon the boundary can

be found. Since there is no closed-form expression for the boundary, an approximation is used where a finite

number of points are p!oted. Silhc. there is no closed-form expression for Os as a function of 01, the proce-

dure for plotting a point on the boundary is to set 01, iteratively search for a value of 0s for which the equa-

tions of Equation Set 6 are satisfied (within some.allowable error), and then trace the Snell's-Law path accord-

ing to the heading for 91 using the values for YI, Y2, and y3, or according to the heading for Os using the

values for xi, x2, and x3. Note also that t,,h expression for yi is not in closed form, and so must be found by

iterative means. ,
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E. PROOFS FOR BOUNDARIES ASSOCIATED WITH PRIMITIVE TERRAIN-FEATURE

TYPES

LEMMA V-1.1: If there are feasible paths from a vertex of a polygonal obstacle, then the obstacle edges con-

stitute boundaries between homogeneous-behavior regions.

PROOF V-1.1: Trivially true. 4

LEMMA V-1.2: Each vertex V of an obstacle hidden edge generates a linear shadow boundary which is the

ray lying on the line defined by V and the first point P on OPL(V), starting at V and lying in the opposite direc-

tion from P.

PROOF V-1.2: Note that if V joins a hidden edge and a visible edge, point P will not be on the obstacle

perimeter by the definition of a visible edge; if V joins two hidden edges, P will be the other vertex of one of

the hidden edges. We prove first that there is a single shadow boundary associated with each hidden-edge ver-

tex, second that no vertices other than hidden-edge vertices generate shadow boundaries, and third, that the

shadow boundary is a ray defined as stated in Lemma V-1.2.

First, consider point Q near V, a hidden-edge vertex. Let P be the first point on OPL(V). Then one of

three cases holds (see Figure 43): either (a) Qa is in the obstacle interior, or (b) Qb and P are intervisible, or

(c) Qc and P are not intervisible. Clearly, if V joins a hidden and a visible edge, Figure 43a applies, and if V

joins two hidden edges, Figure 43b applies. Qa is separated from Qb and Qc, not by shadow boundaries, but

by obstacle-edge boundaries. The optimal path from Qb is (QbG)* = ((QbP)* (PG)*), where (QbP)* is the line

segment PQb. Thus the optimal-path list from Qb is OPL(Qb) = [P I OPL(P)]. The optimal path from Qc is

OPL(QcG)* = ((QcV)*(VP)*(PG)*), where (QcV)* and (VP)* are the line segments VQc and VP respective-

ly. Thus the optimal-path list from Qc is OPL(Qc) = [V, P I OPL(P)]. Thus OPL(Qb) OPL(Qb), so Qb and

Qc are in different regions, so there is a boundary between them.

We show secondly that no other vertices gener, e shadow boundaries. Assume vertex V does not join a

hidden and a visible edge, or two lddcn edges. Then it joins two visible edges. Thus, OPL(V) does not in-
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clude any vertices of the obstacle, from the definition of a visible edge. By Assumption 1-3, V is not on a non-

trivial (i.e., non-obstacle-edge) boundary. Consider a point Q arbitrarily close to V. Clearly, Q is either in the

obstacle interior (call it Qa) or in its exterior (including its edges) (call it QO). Clearly, Qa is separated from Qb

by an obstacle-edge boundary. Now in the absence of externally-generated boundaries in the vicinity of Vi,

Qb can be made close enough to V that it is in the same region as V, and so OPL(V) = OPL(Qb). Thus in the

vicinity of V, there is only one exterior region, and so V does not generate any shadow boundaries.

Thirdly, we show that each shadow boundary is a ray lying on the line defined by vertex V and P, the first

point on OPL(V), starting at V and lying away from P. Consider a point R on ray B in Figure 43a or 43b. By

convention, let points on B not be intervisible with P. Then (RP)* = (RV VP). Now consider R' arbitrarily

close to R but intervisible with P. By the definition of intervisibility, (R'P)* is a straight-line segment. Since

R' is arbitrarily close to P, (R'P)* must be arbitrArily close to (RV VP) , and so (RV VP) must be a straight-

line segment, collinear with P, V, and R. Since B separates the region with OPL = [V, P I OPL(P)] from the

region with OPL = [P I OPL(P)], B must begin at V and lie away from P. +

LEMMA V-1.3: A convex polygonal obstacle has exactly one opposite edge.

PROOF V-1.3:First, we show that obstacle 0 with n distinct vertices has at least one opposite edge. Assume

o in Figure 44a has no opposite edge. Then for any hidden edge ViVi+I, either OPL(Vi) COPL(Vi+I), or

OPL(Vi+i) C OPL(V), or else ViVi+- would be an opposite edge. Now consider vertex Vi, a vertex joining

a hidden and a visible edge. By the definition of visible edges, Vk r 0, Vk OPL(Vi). Therefore, it

must be that OPL(V2) (Z OPL(Vi). Since VIV2 is not an opposite edge, OPL(VI) c OPL(V2). Then by in-

duction on i, similar reasoning shows that Vi, OPL(VI) COPL(V1+ ). For i = n, similar reasoning shows that

OPL(Vn) COPL(Vi). But this statement contradicts that VVk 6 0, Vk e OPL(VI). Therefore by con-

tradiction, obstacle 0 has at least one opposite edge.

Now assume that there are n distinct opposite edges, where n_2. Choose any two opposite edges, say

VV ij and VjVji and without loss of generality assume thatj i+l as shown in Figure 44b. Since VVi+I
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is an opposite edge, Vi 0 OPL(Vi+i). Therefore OPL(Vi+I) C OPL(Vj) and OPL(Vi+I) C OPL(VJ+i). By

similar reasoning with respect to edge VjVj+i, OPL(Vj+i) C OPL(V,) and OPL(Vj+i) COPL(Vi+i). But

this is a contradiction, so there must be no more than one opposite edge.

Therefore a convex polygonal obstacle has exactly one opposite edge.

LEMMA V.1.4: An opposite-edge boundary emanates from each obstacle opposite edge and consists of seg-

ments of hyperbolas such that an initial hyperbola segment starts at the opposite point and is defined by con-

sidering the vertices Vi and V2 of the opposite edge as its foci, with hyperbolic constant being the absolute

value of the difference of the costs of (VIG)* and (V2G)*, as specified in Equation 1. If at any point a shadow

boundary intersects the opposite-edge boundary, it will continue along a new hyperbola segment defined by

considering as foci, first, the vertex of the edge which generated the shadow boundary and which is closer to

the goal of the two vertices of that edge, and second, the focus of the previous hyperbola which is not also a

vertex of the edge which generated the shadow.

PROOF V.1.4: Given a convex polygonal obstacle 0 with opposite edge ViV2, and given point X on VIV2

such that 3(XG)I* and (XG)2*, (XG)I* * (XG)2*, i.e., X is the opposite point. Since ViV2 is a hidden edge,

then it must be that OPLI(X) = [Vi ! OPL(VI)] and OPL'.(X) = [V2 I OPL(V2)] (see Figure 45a). Consider

point P arbitrarily close to X in the obstacle exterior. By Theorem 1-2, (PVI)* = IPViI and (PV2)* = IPV21, be-

cause no other terrain features intervene, so P is in both the homogeneous-behavior region with Vi as root and

the region with V2 as root. By Theorem V-0.1, the set of points P is described by Equation 1.

Let Bi be the set. of points over wh.ch P obeys the Equation I. As ? moves away from X, it lies on BI

only as long as PVi C (PG)I* and PV2 C (P'G)2, i.e., as long as the line segment from P W both ve.,"ices ae

par; of the respective optim.al paths from P in the two directions. If at some point Z ig becomes true that PV,

SPG);*, f~r i=1 or i=2, .lhen at that point BI must have intersected shadow boundary i (swa Figure 45b).

Now the same reasoning as abo'e applies to the point Vk, where OPL(Vi) = [Vk I OPL(Vk)], and so anther

hyperbola branch Bz becomes the adjoining portion of tff. oppoim- dge boundar). Since poimt Z lay, on both

hyp.rbo!a branches B and B.-,it must bc that BI and B2 intersect at point Z. The samoi reasoning con nues
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to apply as long as Bj intersects any shadow boundary of obstacle 0. Therefore the opposite-edge boundary

is a connected sequence of hyperbola segments starting at the opposite point, and for each segment consisting

of a portion of the hyperbola branch with the two visible obstacle vertices as foci and the hyperbolic constant

being c2,-chwhcrec2>ci. *

THEOREM V-1: A convex polygonal obstacle in homogeneous background terrain with specified goal-point

will generate as boundaries the obstacle edges, shadow boundaries from each vertex of a hidden edge as

specified in Lemma V-1.2, and a single opposite-edge boundary consisting of piecewise hyperbolic segments

as specified in Lemma V-1.4.

PROOF V-1: Theorem V-1 follows directly from Lemma V-1.1, Lemma V-1.2, and Lemma V-1.4.

LEMMA V-2.1: A river segment, or river-edge, constitutes a boundary between regions.

PROOF V-2.1: (See Figure 46a.) Given river segment VIV2. and point Xi arbitrarily close to VIV2 having

optimal-path list OPL(XI) = [W I OPL(W)] where We VIV2,i.e.,XI'soptimalpath does notcrosstheriver,

and point X2 arbitrarily close to Vi V2on the opposite side VIV2. Now X2 may have one of three possible op-

timal-path lists: OPL, (X2) = [VI I OPL(V1)] i.e., it goes around end I of the river, or OPLb(X2) = [V2 I

OPL(V2)], i.e., it goes around end 2 of the river, or OPLc(X2) = [[VIV2] I OPL(W)] where [VIV2] specifies

that the path crosses the river without changing direction, and W is the next point on the optimal-path list.

Since in all three cases, the optimal-path list of X2 is different from that of Xi , therefore Xi and X2 are in

different regions. Therefore the river edge constitutes a boundary. *

LEMNIMA V-2.2: Each river vertex V with OPL(V) = [W I OPL(W)] which is an endpoint of a river segment

not joining any others will generate a shadow boundary which is a ray lying on the line VW, starting at V and

l'inZ away from W.
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PROOF V-2.2: Given the same situation as in Proof V-2.1, analyze OPL, (X2) = [VI I OPL(Vt)] and

OPLb(X2) = [V210PL(V2)), with respect to vertices Vi and V2 it: the same manner as in Proof V-1.2 to show

that there are rays emanating from VI and V2 lying away from the goal which act as boundaries between op-

timal paths which go around the vertices and those which bypass them. Note that, assuming a positive river-

crossing cost, location c for X2 will never be such that X2, Vi, and the next point in OPLc(Vi) are collinear,

because if so, it will be less costly for the optimal path to avoid crossing the river and go around vertex Vi in-

stead. *

LEMMA V-2.3: A river segment with vertex V with OPL(V) = [W I OPL(W)] not adjoining any other river

segment may have a river-crossing boundary which is a segment of one branch of a hyperbola constructed by

considering as foci the points V and W, with hyperbolic constant c = IVWI - cr, where cr is the fixed river-

crossing cost. This boundary will exist if the branch closer to V intersects the river segment. The boundary

consists of the portion of the hyperbola branch between the intersection of the branch with the river, and the

first point of intersection of the branch with another river boundary.

PROOF V-2.3: Consider point P which lies in the shadow of river segment with vertex V as in Figure 46b,

where ro is the cost rate for travel in the background region. As in Figure 46a, there are only three possible

....ys we opti.nal path from P can go initially. If P lies on a boundary between paths which cross the river

;. ..... . the fixed crossing cost, and paths which go through V, the first region has V as its root and the second

region has the river segment as its root. Optimal paths crossing river segments do not change headings. There-

fore, th,; path from P to W has cost cpw = ro d(PW) + Cr. The cost of the path from P to V has cost cpv = ro

d(P,V), as usual with a point root, and the cost cw from W is known. But this is just as if paths in region 2 had

W as a root, where the cost from W to G was cw + cr. Thus, the boundary separates two regions whose roots

are points, so by Theorem V-0.1, the boundary is a hyperbola segmont described by Equation I. If cr and the

orientation of VW are such that the boundary does not intersect the river segment between V and U, it must

186



be that for all points in the shadow of the river segment, it is more costly to cross the river than to go around

via V. *

LEMMA V-2.4: A river segment with vertices VI and V2 has an opposite-edge )orwdary which lies on the

hyperbola formed by considering each vertex as a focus conformitg to Equation 1, and lies on the brazc of

the hyperbola which is close to the vertex with higher-c' optimal path.

PROOF V-2.4: Consider pointQ in Figure 46b. This point is on the boundary which separates region 1 from

region 3. Optimal path from Q through region 1 goes through V, while the optimal path through region 2 goes

through U. Thus, the bouz:dary separates regions whose roots are both points, so Theorem V-0.1 applies. +

THEOREM V-2: An isolated river segment has a river-edge boundary, two shadow boundaries formed as

specified in Lemma V-2.2, an opposite-edge boundary formed as specified in Lemma V-2A, and either two,

or no, river-crossing boundaries as specified in Lemma V-2.3.

PROOF V-2: Consider points Xi, X2, Vi and V2 as in Proof V-2.1 and Figure 46a, with optimal-path lists

OPL(Xi), OPL(X&),OPL(Xb), and OPL(Xc) a described in Proof V-2.1. Clearly, these four optimal-path lists

are the only ones possible for points arbitrarily close to an isolated river segment, so by the definition of a

homogeneous-behavior region, there are no more than four regions associated with a river segment. Thus the

only boundaries possible adjacent to an isolated river segment are those between pairs of these four regions,

plus a fifth, the legion unaffected by the river. The form of each boundary follows directly from Lemmas V-

2.1, V-2.2, V-2.3, and V-2.4.,*

LEMMA V-3.1:A road-edge forms a boundary between homogeneous- behavior regions.

PROOF V-3.1: Trivially true.*
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LEMMA V-3.2:Given road segment with goal G, one vertex V, and the other vertex's location unspecified,

and cost-rate rr, with cost-rate in the background to. If the characteristic wedge VAGB as defined in Chapter

V lies "inside" road- vertex V, two road-endroad-travelling boundaries will be formed as rays with vertex at

V, each lying so that its angle wifh the road is i/2 + '.

PROOF V-3.2:Consider the road segment of Figure 47a, with goal G, one vertex V, and the other vertex's

location unspecified, and cost-rate rr, with cost-rate in the background ro. As shown in [Ref. 2], paths will enter

leave a road interior only at the critical angle 41 = sid'l(rr/o). Thus a path leaving the road to point G will do

so at point A. If GA does not intersect the road at or to the "left" (in the figure) of V, no paths will travel along

the road from the direction of V. Otherwise, VAGB is said to lie "outside" V, and paths travel along theroad

from V. Consider points Pi and P2 in the vicinity of P. If P is arbitrarily close to V, the path from Pi will enter

the road at angle '4 en route to A, while the path from P2 will enter the road at V. Thus, the set of boundary

points P lies on ray VP such that LPVA = 7r/2 + 41. The same reasoning with respect to point Q gives that

ray VQ also is a boundary.*

LEMMA V-3.3:Given road segment with goal G, one vertex V, and the other vertex's location unspecified,

and cost-rate rr, with cost-rate in the background ro. If the characteristic wedge VAGB lies "inside" road-

vertex V, a road-edigoal boundary will exist on the V end of the road segment, forming a segment of a hy-

perbola with V and G as foci and obeying Equation 1.

PROOF V-3.3:Consider point P ir. Figure 47b, with OPLI(P) = [V, A, G], and OPL2(P) = [G]. Since the two

regions through which the optimal paths from P lie have points as roots, Equation I applies, and the bound-

ary is a hyperbola segment with V and G as foci. The boundary will begin at the point at which the hyperbola

intersects the road- end/road-travelling boundary of Lemma V-3.2.*

LEMMA V-3.4:Given road segment with goal G, vertices Vi and V2, and cost-rate rr, with cost-rate in the

background ro. If the characteristic wedge VAGB lies "inside" road-vertex Vt, a near-side-road-travel-

ing'goal wil exist on the near side of the river which forn; a parabola with focus G and directrix as specified
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in Equation 2. The boundary will begin at the point of intersection of the parabola with the road segment,

which will be at V2 if VAGB lies "outside" V2, and will be at A otherwise.

PROOF V-3.4:From Figure 47c, the paths from P go to the road and travel along it, or go to the goal. Thus,

the boundary is between regions with point root and road root, so Equation 2 applies. Since paths leave the

road at W in Figure 37, point V2 will correspond to point W if the wedge is "outside" V2, or point A will cor-

respond to point W otherwise. *

LEMMA V-3.5:Given road segment and goal G. If VAGB is "inside" road vertex V, aroad-travelling1road-

crossing boundary will be formed on the far side of the river which is a ray with vertex at point A and col-

linear with GA lying away from G.

PROOF: V-3.5:If VAGB is "inside" V, Figure 47d will apply. Paths from points Pi just to the "left" of P in

the figure will cross the road directly to G, while the path from P and P2 enter the road and travel along it to

A, where they exit to G.*

LEMMA V-3.6:Given a road segment with vertex V and goal G, with road cost-rate rr and background cost-

rate ro. Afar-side-road-travellingigoal boundary will exist if Vis outside V. The boundary will be a parabola

which begins at V and lies away from the goal.

PROOF V-3.6:From Figure 47f, the paths from P go to the road and travel along it, or go to the goal. Thus,

the. boundary is between regions with point root and road root, soEquation 2 applies. Since the point W in

Figure 37 is the point at which paths leave the road, V will correspond to point W. *

LEMMA V-3.7:If VAGB "straddles" V, a road shadow boundary will exist as a ray from V, collinear with

GA, and lying away from G.
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PROOF V.3.7:From Figure 47g, a path from PI will cross the road, while a path from P2 will bypass it. This

will occur only if VAGB "straddles" V, because otherwise paths from P2 will enter the road and travel along

itto A. *

THEOREM V-3:Given a road segment VIV2 with cost-rate rr, a goal G, and a background cost-rate ro; if

characteristic wedge VAGB is "inside" Vi, one road-end/road-travelling, two road-end, one near-side-road-

travelling/goal, and one road- travelling/road-crossing boundaries exist on the Vi end of the road segment;

when VAGB "straddles" Vi, a road shadow boundary exists on the Vi end; when VAGB is "outside" Vi, one

near-side-road-travelling/goal and one far-side-road-travelling/goal boundaries exist on the Vi end; and the

road segment is always a boundary. The form of these boundaries is as described in Lemmas V-3.1 through

V-3.7.

PROOF V-3:Follows directly from Lemmas V-3.1 through V-3.7.*

LEMMA V.4.1:Given high-costexterior-goalHCA with two visibleedges VtV2and V3V4, if the tworegions

whose paths cross the two edges are adjacent, the visible-edge boundary between them is described by Equa-

tion Set 4.

PROOF V-4.1:PerFigure 48a, the edges VlV2 and V3V4 are roots of region 1 and region 2 respectively. Paths

which cross them go directly to G, ard so the description of Theorem V-0.4 applies to this situation, and Equa-

tion Set 4 describes the boundary. *

LEMMA V-4.2:Given high-cost, exterior-goal HCA with a visible edge VIV2 and a hidden edge V3V4, if the

region whose paths cross edge VIV2 and the region whose paths go to and travel along edge V3V 4 are ad-

jacent, the visible-hidden-edge boundary between them is desribed by Equation Set 5.

PROOr V-4.2:Pcr Figure 48a, the edges VIV2 and VSV6 are roots of region I and region 3 respectively. Paths

which cross edge VIV2 obey Snell's Law, and then go directly to G, while those which travel along edge VSV6
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leave the edge at point Vs en route to the goal and so the description of Theorem V-0.5 applies to this situa-

tion, and Equation Set 5 describes the boundary.*

LEMMA V-4.3:Given high-cost,-exterior-goal HCA with two hidden edges V4V5 and V6V7, such that

OPL(P6) = (V5, V4 I OPL(P4)], if the two regions whose paths enter and travel along the two edges are ad-

jacent, the hidden-edge-merging-path boundary betwen them is described by Equation Set 3. *

PROOF V-4.3:Per Figure 48c, the edges V4V5 and V6V7 are rots of region 4 and region 5 respectively. Paths

which enter edge V4Vs at the critical angle travel along it and leave at V4 en route to the goal, while those

which travel along edge V6V7 leave the edge at point V6, eventually merging with paths from region 4. So the

two edges are linearly- traversed edges and are the roots of regions 4 and 5, so the description of Theorem V-

0.3 applies to this situation, and the boundary is a line segment as described therein.*

LEMMA V.4.4:Given high-cost, exterior-goal HCA with two hidden edges V4V5 and V6V7, such that

OPL(P6) = [Vs, V4 I OPL(P4)], if the two regions whose paths enter and travel along the two edges are ad-

jacent, the hidden-edge-diverging-path boundary between them is a line segment described by Theorem V-

0.3.

PROOF V-4.4:Per Figure 48e, the edges V4V5 and V7Vs areroots of region 4 and region 6 respectively. Paths

which enter edge V4V5 at :he critical angle travel along it and leave at V4 en route to the goal, while those

which travel along edge V7V8 leave the edge at point V8 (going in the other direction around the exterior of

the HCA). So the two edges are linearly- traversed edges arid are the roots of regions 4 and 6, so the bound-

ary between them is a line segment as described in Theorem V-0.3.+

LEMNIA V-4.5:Givcn a high-cost HCA with exterior goal G and vertices Vi. There is a boundary associated

with each Vi such that optimal paths in one region cross edge Vj.iVj and optimal paths in the other region

cross edge VjV -j, except in the case that shorcutting occurs along the entire edge ViV,+i to edge Vi.lVj, in

which case no boundary occurs for vertex V1.
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PROOF V.4.6:There are three cases: both edges are visible, one edge is visible and the other is hidden, or

both edges are hidden. When both edges are visible, by definition optimal paths from neither vertex includes

points along an edge of the HCA. Consider Figure 30, and points near V2 in the HCA interior. Since the inte-

rior has higher cost-rate than the exterior, there is no incentive for paths from points close to the visible edge

to move further away frcm it. Rather, such paths will cross the edge as soon as possible to use the lower-rate

exterior. Thus there are some points in the interior close to Vi whose paths cross edge Vi-iVi and some whose

paths cross edge ViVi+i. There is, therefore, a boundary between them which begins at Vi and lies in the HCA

interior.

In the second case, by the same reasoning as above, some paths whose start points are close to Vi will

cross visible edge V.lVi. But some points close to Vi may be far enough from edge Vi.iVi that it will be less

costly to move initially away from the goal to edge ViVi+i in order to travel at the less expensive exterior rate.

Clearly, this will cause a boundary which begins at Vi. If, however, edge ViVi+I forms an acute enough angle

with Vi.1Vi that there are no points near Vi for which it will be less costly to move away from the goal. In this

situation, shortcutting will occur, at least in the vicinity of Vi. If some paths travel along edge ViVi+l, the point

at which they shortcut into the interior will be the beginning of the boundary associated wi'.h Vi, because points

just inside ViVi+i and toward Vi+i from the shortcutting point will have less costly paths by moving away

from the goal to the lowcr-rate edge, while points just inside but toward Vi from the shortcutting point will go

directly across the HCA. If shortcutting occurs all along edge ViVi+i, however, there will be no boundary as-

sociated with Vi, because all paths have the same behavior. In the third case, by the same reasoning as above,

a vertex joining two hidden edges will have an associated boundary unless shortcutting occurs all along the

edge.*

LEMMA V-4.7: The edgcs of a high-cost HCA with exterior goal arc homogeneous-behavior boundaries.

PROOF V-4.7:Trivially true.#
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LEMMA V-4.8:Given a high-cost HCA with exterior goal G, each vertex V of a hidden edge generates a

linear shadow boundaty which is the ray lying on the line defined by V and the first point P on OPL(V), start-

ing at V and lying in the opposite dirtction from P.

PROOF V-4.8: The proof is the same as for Lemma V-1.2. (See Figures 23,24, and 25.) 4

LEMMA V-4.9:Given a high-cost HCA with exterior goal G with n interior boundary trees. There exists an

opposite-edge boundary associated with each tree which begins at the point at which an interior boundary of

the tree not associated with a vertex (i.e., nCt one of the leaf ncdes of the tree, see Figures 30, 31, and 32) in-

tersects an edge of the HCA. There is also an opposite-edge boundary which begins at each point at which two

other opposite- edge. or a shadow and an opposite-edge boundary intersect. An opposite-edge boundary is

described by Equation I if the interior boundary at which it begins separates regions of two linearly-traversed

edges, or by Equation Set 6 if the interior boundary at which it begins separates regions whose paths cross two

edges en route to the goal. If it begins at the intersection of two other exterior boundaries, it wili be described

by Equation I if the two regions which the intersecting boundaries do not have in common have point roots,

and by Equation Set 6 (or a degenerate version) if one of the regions which the intersecting boundaries do not

have in common has paths which cross two edges en route to the goal.

PROOF V-4.9:At the point at which an interior-boundary tree in.2rsects a hidden edge of the HCA other than

a vertex, one of four situations must exist. An optimal path from the point of intersetion may go across the

HCA interior and a second optimal path from the same point travels along the hidden edge, for example, in

Figure 30 where two of the boundaries labelied 'b" intersect edge V4V5. Secondly, one path from the point of

intersection may cross a visible edge and a second path cross another edge, as in the boundary labelled "a" in

Figure 30. Third, two paths may go from the point of intersection in opposite directions along the edge, as in

the boundary labelled "d" in Figure 31, where one path goes through V4 and onepath goes through V3. Fourth-

ly. there may be only one optimal path-from the point of intersection. as in the boundary in Figere31.1ha! in-

tersects edge V2V3,
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By examining Figures 30 and 31, it can be seen that when there are two optimal paths from the point of

intersection of the interior boundary, there are points in the HCA exterior which also go in two directions,

forming a boundary. in the fourth case above, where there is only one optimal path from the point of intersec-

tion, it car% be seen that there is no exterior boundary. But the interior boundary in this case is associated with

a verte x. In the first case, the exterior boundary separates a region whose points go to the vertex of the hid-

den edge through which goes the path from the intersextion point, from the region whose paths cross two edges

en route to the goal. This is a degenerate case of Theorem V-0.6, where one path crosses two edges and the

other path goes through a point instead of crossing two edges, so Equation Set 6 applies. In the second cse,

the exterior boundary separates a region whose paths cross two edges fro-n a region whose paths cross two

other edges, so Equation Set 6 applies. In the third case, the exterior boundary separates two regions whose

paths go through points, as in Theorem V-0.1 and Equation 1.

When any two exterior boundaries intersect, it must be that a third opposite-edge boundary begins, be-

cause past the point of intersection there must be a discrimination between the two regions which the first two

boundaries did not have in common. The third boundary has as its region roots either two points, a point for

one root and two edges fP.r the other, or two different edges for both roots, because these are the only types of

roots which the original exterior opposite-edge boundaces had. These roots are described by Equation I or

Equation Set 6, where a degenerate case of Equation Set 6 is the case that one of the pair of edges is replaced

by a vertex, Figures 30 and 31 show examples of exterior boundaries intersecting.

LEMMA V-4.10:Giver high-cost HCA with exterior goal G, and vertex Vjoining a visible and a hidden edge

across which shartcutting occurs. There. is a corner-cuting boundary which begins at point V and obeys the

degenerate fo.'m of Equation St 6 where paths on one side of the boundary cross two edges, while paths on

the other sidc go through a vertex.

PROOF V-4.10:(Se Figure 31.) Poins' it he shadow boundary emanating from V2 in Figure 31 (labelled

"C")~ ~~o O ~,ah:.j h^ dt,41t Ctn , 0hc Lit 'A ;nth,;^, hne n hgnhar.-fnct v.rl than tho ovt rr fhl-ro, rft_Cdmft.

points just below the shador boundary which will travcl to V2 rather than go through the MCA. But points
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further below the shadow boundary will have further to go to vertex V2 and so will cross the HCA, paying the

higher cost-rate to do so. One set of points lies in a region with V2 as root, while the other set of points lies in

a region with edge V2V3 as root. Paths in the second region cross two edges en route to the goal. This con-

forms to the digenerate form of Equation Set 6. *

THEOREM V-4:A high-cost HCA with exterior goal has boundaries according to Lemmas V-4.1 through

V-4.10.

PROOF V-4:Follows directly from Lemmas V-4.1 through V-4.10.*

LEMMA V-5.I:Given high-cost HCA with interior goal G. If the optimal path from a vertex Vi travels ini-

tially along an edge of the HCA, there is a hidden-edge boundary which begins at Vi and is a line segment

conforming to Theorem V-0.3.

PROOF V-$.I:(See Figure 33.) Assume that for a vertex of high-cost interior-goal HCA Vi, OPL(Vi) = [X,

G], where X is a point on HCA edge ViVi for example V3 in Figure 33. Then there will be some points close

to Vi in the HCA interior which will exit and travel along edge ViVi.i to X. Similarly, there will be some points

close to Vi on edge Vj+jVi whose paths go through Vi, and so there will be points close to Vi in the HCA in-

terior which exit the HCA and travel along edge Vj+iVi to Vi. Thus there are two regions in the vicinity of Vi,

and the boundary between them separates paths which enter a linearly-traversed edge and travel along it from

those which enter another linearly-traversed edge and travel along it. This is the situation of Thcorem V-0.3,

so the boundary is a line segment as described thcrein.+

LENNM1A V-S.2:Given high-cost HCA with interior goal G. If the optimal path from a vertex Vi travels ini-

tially along an edge of the HCA, there is a hidden-cdgelgoal boundary which is a parabola as specified in

Equation2 which separates points which go to and travel along edge ViVt+ from points which go to and travel

along edge ViV1.i.
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PROOF V.$.2:(See Figure 33, boundaries labelled "b".) idy the same reasoning as Lemma V-5.1, there are

points close to vertex Vi which exit the region and travel along edge Vi.iV; to Vi. Consider point P which is

moved away from Vi into the interior along the hidden-edge boundar- associated with Vi. At some point, paths

from P which go to edge ViVit will cost no less than a path from P straight to the goal at the higher cot rate.

At this point, a new boundary begins separating points which go to edge ViVi+t and travel along it to Vi, from

points which go to G- This is the same situation as described in Theorem V-0.2, with Equation 2 describing

the parabolic boundary. 4

LEMMA V-SI:Given high-cost HCA with interior goal G. If the optimal path from a vertex Vi travels ini-

tially along edge ViVi.t of the HCA and cuts into the HCA at some point along edge ViVi-l, there is a visible-

edgelgoal boundary which is a parabola as specified in Equation 2 and separates points which travel along the

visible edge ViVi.1 from those which go directly to the goal.

PROOF V..3:By the same reasoning as Lemma V-5.2, when point P is far enough from Vi that paths which

go to edge ViVid cc'-t no less than a path that goes direcly to G at the higher cost rate, a boundary will begin

separating points which go to the linearly-traversed edge from those which go to the point G. This is the same

situation as described in Theorem V-0.2, with parabola as des-cribed in quation 2.*

LEMMA V-S.4:Given high-cost HCA with interior goal G, and two adjacent vertices Vi and Vi+1 which have

optimal paths lying on HCA edges, neither of which is edge ViVi+i. Then there will be an interior-opposite-

edge boundary which is a line segment beginning on edge ViVi+; and conforming to the description of Theorem

V-0.3.

PROOF V-5.4:If the optimal path from Vi lies initially on edge ViVi.t, and the optimal path from Vi+i lies

initially on edge V1V1+., as must be by assumption, there will be points in the interior of the HCA as described

in Theorem V-0.3 which have paths which go to edge V1Vi+i and travel along it to Vt, and similarly there will

be points in, the interior which have paths which go to edge V1Vi . and travel along it to Vl+i. Where these

tm o regions meet, the boundary will separate points v, hosc paths go to one line'-ly -traversed edge from points
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whose paths go to anoth.r lir~early- traversed edge, the situation described in Theorem V-0.3.Therefore, the

boundary will be a line segment as described in Theorem V-0.3. *

LEMMA V-S.S:Each edge of a high-cost HCA with inerior goal will be a hca-edge boundary.

PROOF V-$.5:Trivially true. *

LEMMA V-$.6:Given high-cost HCA with interior goal G. If the optimal path frcn a vertex Vi travels ini-

tially along an edge of the HCA with OPL(Vi) = [X I OPL(X)], there is a shadow boundary which is a ray with

vertex Vi and collicar with line VjX, which lies away from X.

PROOF V-5.6:The proof proceeds as in Proof V-1.2.*

LEMMA V-$.7:Given a high-cost HCA with interior goal G, and opposite edge ViVi+i as defined in L, mma

V-5A. Then an exterior opposite-edge boundary exists which conforms to Equation 1.

PROOF V-5.7:At the point at which the interior-opposite-edge boundary intersects edge ViVi+i, there are

two optimal paths which go through vertices Vi and Vj+1.Points will exist in the exterior, but close tc this in-

tersection point, which will have optimal paths which go through these vertices as well. These points are on a

boundary which separates points whose paths go through Vi frrrn those which go through V 1ij, two region'

with point roots. Therefore, Theorem V-0.1 applies, and the boundary is a hyperbola segment which conforas

to Equation 1. *

LEMMA V-5.8: Given high-cost HCA with interior goal G, and vertex Vi which has optimal path which goes

directly to G. There will be a visible-edge boundary in the HCA exterior beginning at Vi which conforms to

Equation Set 4.

PROOF V-5.8:Considcr points close to V, outside the HCA. Since the best path from Vi is straight to the goal,

clearly paths from points in the lower-cost exterior will have optimal paths which go directly to the goal via

199



a Snell's-Law path across one of the edges incident upon Vi. The boundary which separates paths which cross

one edge from hose which cross the other edge conform to the situation described LnTheorem V-0.4, and so

the boundary will conform to Equation Set 4.*

LEMMA V-$.9:Given a high-cost HCA with interior goal C and vertex Vi with associated hidden-edge/goal

boundary which intersects edge ViVi+ .Then there will be a corner-cutting boundary which begins at the point

oL intersection and continues into the exterior conforming to a degenerate form of Equation Set 4, where one

edge-crossing degenerates to a point crossing.

PROOF V-5.9:(See Figure 33, boundaries labelled "h".) At the point of interseetion of the hidden-edge/goal

boundary with edge ViVi+i, there are two optimal paths; one goes directly-to the goal, and the other goes

through Vi. A point just outside the HCA in the vicinity of tie point of intersection may therefore have a path

which goes to Vi, or which crosses edge V2V1+i en route to the goal. The boundary separating such points is

therefore a boundary between a region which has a point as root, and one which has an edge-crossing as root.

This is a degenerate form of the situation of Theorem V-OA, so Equation Set 4 applies.*

THEOREM V-S: Given a high-cost HCA with tinerior goal, the boundaries associated with the HCA are as

described by Lemmas V-5.1 through V-5.9.

PROOF V-5: (See Figure 33.) Follows directly from Lemmas V-5.1 through V-5.9.

LEMMA V-6.1:Given a low-cost HCA with interior goal point G, there are no boundaries in the HCA inte-

rior.

PROOF V-6.1: (See Figure 34.) Assume that there is a point P with optimal path OPL(P) = [R I OPL(R)I, i.e.,

that the path does not go directly to the goal. R must lie on an edge or vertex, by Theorem 1-2. In cither case,

the path musi be longer in Euclidean distance than the line segment PC, by the triangle inequality. Since the

interior cost-rate is lower than the exterior cost-rate, there is no advantage to a path to use the exterior cost-
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rate, so the cost of PG must be less than IPRI + I(RG)*I, which is a contradiction. Therefore all interior points

have the path list [Gi. By the definition of a homogeneous-behavior region, the entire HCA interior is a single

region, so there are no interior boundaries.*

LEMMA V.6.2: Given a low-cost HCA with interior goal G. F~oro each vertex V there are two vertex/edge-

crossing boundaries separating point% whose optimal paths go through V and then to G from those which cross

an edge obeying Snell's-Law and then go to G. Each boundary-lies on the the path from G through V which

obeys Snell's Law for crossing one of the edges incident upon-V,.

PROOF V-6.2:(See Figure 34.) Consider a point P in-tho HCA exterior arbitrarily close to the exterior leg of

a Snell's-Law path from G through V with :espect Io edge-E. The optimal path from P goes through edge E

obeyingSnell's Law. By the principle of optimality (Thorem 1-1), all points along thatpath also have optimal

paths which lie on the same path. Thus, the boundary is a ray lying at the angle prescribed by Snell's Law.*

THEOREM V-6:Given a low-cost HCA with interior goal. The interior has no boundaries, and the exterior

boundaries are as described in Lemma V-6.1.

PROOF V-6:Foliows directly from Lemmas V-6.1 and V-6.2.*

LEMMA V-7.1:Given a low-cost HCQ with exterior goal, each edge is an hca-edge boundary.

PROOF V-7.1:Trivially true. +

LEMMA V-7.2:Given low-cost -ICA with exterior goal G and vertex V such that the optimal path from V

ge-cs initially into the HCA interior. Then a vertexledge-crossing boundary exists for each edge incident upon

V which is the second leg of a path from 0 through V which obeys Snell's Law with respect to the edge, and

separates paths starting in the exterior which go through V from paths which cross the edge. If !he optimal

path from V goes initially along an edge of th HCA, one such boundary exists with respect to the edge inci-

dent upon V not travelled by the path from V.
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PROOF V-7.2: (See Figure 35.) The same reasoning as in Proof V-6.2 applies here.*

LEMMA V-7.3A:Given low-cost HCQ with exterior goal G. interior cost-rate ri, exterior cost-rare re, and ver-

tex V such that the optimal pad-i from V goes initially along an edge of the HCA incident upon V. Then it ver-

texiedge-foilowing-boundary exists which is a ray from-V along a lint which makes the angle 7r/2 + Oc with

the edge, where ec = sin1 -(rdre).

PROOF V-7.3: (See Figure 35.) The analysis is the same as Proof V-6.2 above. +

LEMMNA V-7.4:Given low-cost HCA withi exterior goal G, and vertex V with optimal path which goes ini-

tially along ' i edge of the HCA. There is a parabolic edge-foilowing/goal boundary which begins along the

edge, conforms to Equation 2, and separates paths which go-to the edge and follow it, from paths which go

directly to the goal.

PROOF V-7.4: (Sec Figure 35.) Theproof is the same as for the near-side-road- travelling/goal boundary for

road segments in Proof V-3.4.*

LEMMIA V-7.5:Given low-cost HCA with exterior goal G, and vertex V such that the optimal path from V

lies along an edge of the HCA-incident upon V. Then there is a hyperbolic vertexlgoal boundary which coa-

fo.-ms to Equation 1, and separates paths which go through V from those which go directly to G.

PROOF V-7.5: (SeFgure 35.) The proof is tlie some as for road-cnd/goal boundary of road segmeonts, Proof

V-3.3.*
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LEMMA V.7.6:Given a low-cost HCA with exterior goal and vettex Vi such that the optimal path from Vi

lies in the HCA interior, and vertex Vi.1 adjacent to Vi and closer to G. A edge-crossingigoal will exist if the

vertex/goal boundary associated Vi.1 intersects the both vertex/edge-following boundaries emanating from V.

1. It will conform to a degenerate form of E&uadon Set 6, and sepmate puths which cross edge ViVidI and then-

cross a visible edge. en route to the goal, from paths which go straight o the goal.

PROOF V-7.6: (See Figure 35.) At the point at which the hyperbolic vertex/goal boundary intersects the ver-

.ex/edge-following boundary associated with edge ViVid, the two regions not common to the boundaries am

the one whose paths go straight to the goal, and the one whose paths cross the edge en route to a second edge

crossing, and the goal. But this is the form of Theorem V.0.6, where one pair of edge-crossings degenerates

to a single point- crossing. Thus Equation Set 6 applies. *

LEMMA V-7.7:Given low-cost HCA with exterior goal G, and vertex V with optimal path which goes direct-

ly to the goal, such that V is not incident to any other homogeneous-behavior-region boundaries. There is a

visible- edge boundary in the HCA interiorwhich begins at V and continues across the HCA to a hidden edge.

PROOF V-7.7:Consider points inside the HCA near V. The path from such a point crosses one edge incident

upon V or the other (See Figure 35). Therefore, there are two regions inside the HCA. and the ooundary

separates the two. Since the region roots are both edges crossed by paths, Theorem V-0.4 applies, so the bound-

ary conforms to Equation Set 4. 4

LEMMA '-7.8:Given low-cost HCA with exterior goal G, and vertex V with optimal path which goes direct-

ly to the goal, such that V is not incident to any other homogeneous-behavior-region boundaries, and given

the visible- edge boundary in the HCA interioras specified in Lemma V-7.7. There is an opposite-edge bound-

ary in the HCA exterior which begins at the point of intersection of the visible-edge boundary with the hidden

edge and conforms to Equation Set 5.
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PROOF V-7.8:At the point of intersection of the visible-edge boundary with the hidden edge, there are two

optimal paths, which cross the two edges incident upon V. Points in the HCA exterior near this point of inter-

section will cross into the HCA interior, crossing on one side or the other of the point of intersection. Points

which cross on one side will traverse the HCA interior and cross one of the edges incident upon V, while points

which crosson the otherside will cross the otheredgeincidentupon V.Therefore, the boundary which separates

points with these two behaviors conforms to Equation Set 6. *

THEOREI, V-7:Givcn a low-cost HCA with exterior goal, boundaries are generated according to Lemmas

V-7.1 tr ough V-7.8.

PROOF V-7:Follows directly from Lemmas V-7.1 through V-7.8.*
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APPENDIX B - POINT-TO-POINT WAVEFRONT PROPAGATION

ALGORITHM

algorithm wavefront-propagation (Algorithm B-i)
input: Start-Point, Goal-Point
(
Wavefront := Start-Point;
while (Status = INPROGRESS) /* iteratively expand wavefront until *1

expand-wavefront(Wavefront), /* status is DONE or NIL */
if (Status = DONE)

Optimal-Path:= Goal-Point concatenated
with back-path(Goal-Point);

else /* status is NIL, so no feasible solution */
Optimal-Palti is undefined;

) /* end of wavefront-pre;pagation */

procedure expand-wavefront
=input: Wavefront(
if (Wavefront is empty) /* Base came of recursion. If empty at 1st call *1

Status := NIL; /* to expand-wavefront, there is no feasible path *1
else

I
Current-Ccll := cell on Wavefront with min remaining cost;
expand-cell(Current-Cell);
if not (Status = DONE)

I
Re st-of-Wavefront := Waveftnt less Current-Cell;
expand-wavefront(Rest-of-Wavefront); /* recwsive call to expind-wavefront *1
if not (Status = DONE)

(
Wavefront := Cells-for-New-Wavefront /* Note: Wavefront is recursively emptied *1

appended onto front of Wavefront; /* out 1level by level and new Wavefront *
Status := INPROGRESS; /* is built up as each level returns. *1

)

} /* end of expand-wavefr rnt */
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procedure expand-cell
input: Current Cell
i /* initialize flag to assume that Current-Cell */
Finished-With-Cell := TRUE; /* will not stay on Wavefront */
Ceils-for-New-Wavefront:= empty list;
for (New-Cell := North-, East-, South-, and West-Neighbor)

o,thogonal-expand(CurrentCell,NewCell);
for (New-Cell := Northeast-, Southeast-, Southwest-, and Northwest-Neighbor)

diagonal-expand(Current-CellNew-Cell);
if not (Finished-With-Ceil) /* keep Current-Cell on Wavefront *

Cells-for-New-Wavefront := Current-Cell appended
onto Cells-for-New-Wavefront;

If (Cels-for-New-Wavefront contains Goal-Point)
Status := DONE;

else
Status := INPROGRESS;

S/* end of expand-cell*/

procedure orthogonal-expand
input: Current-Cell, New-Cell
{
if ((Parent-Pointer-of-New-Cell is not yet set) /* if this is first cell to expand into New- */

or (Parent-Pointer-of-New-Cell = Current-Cell) /* Cell, or this path costs less to expand into */
*/ or ((Initial-Cost-of-New-Cell - 1.414) /*New-Cell, setbackpointerand exploreNew-Cell.

< Cost-of-New-Cell))
I
Parent-Pointer-of-New-Cell := Current-Cell; /* Current-Cell becomes parent of New-Cell. */
Cost-of-New-Cell := Cost-of-New-Cell - 1A14; /* decrement cost of New-Cell */
if (Cost-of-New-Cell < 0)

I /* if New-Cell has been fully explored, */
overflow(Current-Cell, New-Cell); /* then New-Cell and possibly an overflow *1
Cells-for-New-Wavefront := Overflow-List i* cell are added to new Wavefroi '/

appended onto New-Cell;
)

else
/* if New-Cell has not been fully explored, */

Cells-for-New-Wavefront := empty list; /* New-Cell is not added to new Wavefront */
Finished-Wih-Cell := FALSE; /* but reset the flag to note that */

/* Current-Cell must stay on Wavefront-*/
I

I /* end of orthogonal-expand *
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procedure diagonal-expand
input: Current-Cell, New-Cell(
if ((Parent-Pointer-of-New-Cell is not yet set) f* if this is first cell to expand into New- */

or (Parent-Pointer-of-New-Cell = Current-Cell) / Cell, or this path costs less to expand into */
*1 or ((Initial-Cost-of-New-Cell - 1.0) /* Ne% -Cell,setbackpointer and explore New-Cell.

< Cost-of-New-Cell))
(
Parent-Pointer-of-New-Cell := Current-Cell; /* Current-Cell becomes parent of New-Cell. */
Cost-of-New-Cell :- Cost-of-New-Cell - 1.0; P decrement cost of New-Cell. */
if (Cost-of-New-Cell < 0) /* if New-Cell is fully explored, */

Cells-for-New-Wavefront := Cells-for-New- /* add it to new Wavefront. */
Wavefront appended onto New-Cell;

else
S/* if New-Cell is rot fully exrored,*/

Cells-for-New-Wavefront := null list; /* do not add it to new Wavefront */
Finished-With-Cell := FALSE; /* and reset flag to insure that Current-Cell */

/* gets put back on Wavefront. */
)

} /k* end of diagonal-expand */

procedure overflow
input: Current-Cell, New-Cell
I
Overflow-Cell := cell on opposite side of New-Cell from Current-Cell;
if ((Parent-Pointer of Overflow-Cell is not yet set)

or (Parent-Pointer of Overflow-Cell = New-Cell)
or ((Initial-Cost-of-New-Cell - 1.0)

< Cost-of-New-Cell))

Parent-Pointer of Overflow-Cell := New-Cell; /* Current-Cell becomes parent of New-Cell. */
Cost of Overflow-Cell := Cost of /* decrement Overflow-Cell by the negative */

Overflow-Cell + (Cost of New-Cell); /* amount left over from New-Cell. */
if (Cost of Overflow-Cell < 0) /* if necessary, call overflow again. */

I
overflow(New-Cel, Overflow-Cell);
Overflow-List := Overflow-List

appended onto Overflow-Cell;
)

else /* else Overflow-Cell is noL */
Overflow-List := empty list; /* added to new Wavefront. */

)
else /* if Overflow-Cell already has */

Overflow-List := empty list; /* a parent, do nothing. */
/* end of overflow */
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APPENDIX C - WAVEFRONT-PROPAGATION OPM CONSTRUCTION

SOURCE CODE

*AAA opm" creates an optimal path mrip by-finding-the bound& -riea
. between regions of similarly-behaved optimal paths uaing the

AAAwavefront Ipropogation algorithm. The basic structure of- tle

*.,"*, 0 wavefronit algoritlum used is adapted frim a Pzolog -program
;*40AAA by MAJ Bob Riclobourg, June -87-.

AAAAA* This is the "pure" version which tests for boundaries by checking
66' for the equivalent turn-poinits in the optimal-pati, list of
,AAAneighboring cells.

AAA

.''Current as of 27 Junm 89

AAAInpqt: files "declar", "initmap", "utile", "bdry", & *graphics".
uput: Grnphical %iutput to thme first Symbolics screen.

r*A unction "opm" is the top-level fuactki of file opm.lisp
;*** Argumenjts: none

RAAA feturned: T.
*AAA side effects: sets *boujndary* array with the pixels which

;AAAAArepresent region boundaries.
,AAA Functions Usedi initialize-map, initialize-graphics,

A A AA expattd-wavefromt, draw-and-show-windows,
'I ~draw-and-show-bdry-window, kill-windows,
*AAAAAand report-completion.

(defun ormB ()
(setf *internal-timel* (get-internal-run-time))
(set!- *external-timelA f(get-universal-time))
(initial ize)
(princ "Init Process Time: "
(prinil -(- (setf *internel-time2A (get-internal-run-time)) A internal-timel A))

(linefeedi)
(princ " -Elapsed Time: U

(prinI ( (set! *exteriia,-tine2 (get-universal-time)) *external-timelO))
(Iiiioteed)
(do (lWavelront (list *goal*)

(expand-wavefrosit Waverontf)'-
((null WavefronL) I-

* (draw-and-show-window))
(cond (-equal nil A ircremental-bdry-chmeck*) (check-all-boundaries)))
(princ "Expansion Process Time:-")
(Foriml C-(set! Ainterial-Limel* *get-internail-run-time)) Alinteriial-tlmue2l))
(litiefeed)
(princ " Elapied Time:, "
(Prini -(- (set! A1exte:nal-tineAA (get -univerval-time) ) Oexternal-Lime2A))
(11 npefeed)
(draw-atiud-saow-bdrjy-wicidow)
(cond U(null ',increnmental-bdry-checklI (show-backpaths)))
(repoz~t-cornpletionj)

0. # 0 0 0A A 0. AApAA A AA A' A A 0 - A_ A A A *A A A A 0. 0A A A A A 0 A fA A A A * A A A.4 A A, 0 t 0. 0 AAA &A

;*** functityei initialize loads files, preprocesses the map, and
*A'A*# tiitisliren thome gramphics screen.
(defunl iJtIAlize 0)

(load "deciar")

(loadr "betty")

(load "gap2(ics"



(initialize-map,

(J nitialize-uraphics)
(princ "Beginning Wavefont Expansion) (linefeed) (linufeed))

** Function expand-wavefront: computes the ney" vavefront by taking

the first pair of cell coordina. 6 from the wave
and processin. ..t, then recursively processing
the rest of the list in the same manner.

:*"**' Argument: Wave, the remainder of" the old wavefront left to process
"'* Returned: the new wavefront, or nil if Wave becomes enpty

,****" Side Effects: see be!ow
;**~*' Functions Used: expand-cell and expand-wavefront
(defun expand-wavefront (Wave)

(cond ((null Wave) nil)
(t (append (expand-cell (car Wave).k

(expand-wavefront (cdr Wave))))))

;'** function expand-cell: determines which of the eight neighboring

cells will be on the new wavefront and whether there is a
region boundary arousid the center cell.

;06*** Argument: Cell, a list of the X,Y coords of the cell on
the current wavefront-being processed.

:"'' Returned: A list of cells to be added to the new wavefront
:""*'* Side effects: none
;*4*** functions Used: orthog-expand, diag-expand-

(defun expand-cell (Cell)
(setq *finished-with-cell-pO 't) ; initialize flag - assume

: cell will not stay on wf
(cond ((not (null *incremental-bdry-check*)) (check-for-boundaries- Cell)))
(Jet (IX (car Cell))

(Y (cadr Cell))
(Cells-to-add
(nreverse

(remove nil
(append
(orthog-expand (list X (1+ Y)) (list X Y))
(orthog-expand (list (If X) Y) (list X Y))
(orthog-expand (list X (1- Y)) (list X Y))
(orthog-expand (113t (I- X) Y) (list X Y))
(diag-expand (list (I- X) (14 Y)) (list X Y))
(diag-expnnd (Js tt -(1 X) (14 Y)) -(list X Y)I
(diag-expand (list (1+ X} (1- Y)) 'list X Y))
(dlag-expan'J (list (1- X) (1- Y)) (list X Y)))))))

(cond
((null *finished-with-cell-pl) ; If some neighbors are not fully
(cons (list X Y) Cells-to-add)) ; explored, leave center cell on wf

(t Cells-to-add))))

"6 Function diag-expand: explores a cell- -hich is in a diagonal
direction from the cell being expanded.

;""'06 Arguments: same as orthog-expaind
;#*:'• Returned: A list consisting of a list of cells to be added to

the new wavefront and a flag to note that (1) Center-cell
hou Cully explored irs- neighbor, or (0) it has not.

;''*'* Side Effects: Sets the parent coords of flew-cell if they ace nil
-(def£, ding-expand (flew-cell Center-cell.)

(let ((Xii (car llew-celJ))
(Yn (rndr flew-,el.]B)
(XVc (car Center-celJ))
(Yv (cadr CenLer-cell)))
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',cond ((null (aref *cell* YtiYn II I IC Kew-cell not explored
(setf (acef *ccll* i:z Yr. 1) ;,-'et, and Is not an obstacle,

Center-ceXl) * Center-cell becomes its parent
-(set-opl Xnt Yn Xc 1c) , Set Opt-Path-List -for (Xn,Yn)-
(satf 4arez *cell* Xn Yn 0) ; Decrement cost

(- (aref *cell' X Yn 0 1)
-(cond ((<- (aref ~cellt X:n Yi .0- 0) ; XE Newce.1 is fully explored

(setq Abackpath-pixel-lLst*
(append

Iuet-bacp,--h Xn Yn) : add its Oarent to the
*'ackpat,1-pixel-liht )) display list of parents

(list Hew-cels.)) ; and *dd New-cell to wave.
(t (3etq *finished-.with-cell-p* ; If Ne"-cell is not fully

nil)))-) ; explored, don't add to wE,
;and note that Center-cell
must stay on wavefront.

((and (- Xc -(car (aref cill* Xn Yn I))) ; If Newcell's parent is
I- Yc (cadr "are *cel* -Xn n 1) )) ; Center-cell and Hewcell
(> taref Ocell* Xn Yn-0) 0)) ; not fully explored,

(setf (aref *cell* Xn Yn 0) ; Decrement cost.
(- rarer *cellO Xn Yn-0) I))

(cond -((<- -(artf *cell* Xn Yn 0) 0) ; If Newcell is fully explored
(sn.tq *backath-pixel-list*

(append ; Add parents to-the
(get-backpath Xn Yn) ; -backpath display
*backpth-pixel-list* ))

(ltst Hew-cell)) A -dd current rew -ell r.o wf
(t (setq *finished-hiLh-cell-p* It Pe-uell is not fully

nil)))) I explored don't add it to
; wfand note thet Center
; mist stay on wavefrout.

Ct nil)))) f NewcelA was already i.plored, don't vdd-to wave.

;,'"I" Function orthog-expand: explores a cell which is in an-orthogonal
direction from the cell being-expAnded.

Arguments: the first argument is a list of the -X,T
coords of the cell being explored; -the second is a list
of coordinates of the cell on the current wavefront
being expanded from.

Returned: A list of two elements: the first is a list of
new cells to be added to the new wavefront and the second
is a flag set as indicated above (in diag-expand)

Side Effects: Sets the parent coords of Hew-cell if they are nil
(defun orthog-expand (New-cell Center-cell)

(let ((Xn (car New-cell))
(Yn (cadr New-cell))
(Xc (car Center-cell))
(Yc (cadr Center-cell)))

(cond ((null (aref *cell' Xn Yn 1)) ; If New-cell not explored
(setf (arer "cell* Xn Yn 1) ; yet, and Is not an obstacle,

Center-cell) ; Center-cell becomes its pnrent
(set-opl X11 Yn Xc ¥c) , Set Opt-Path-List for (Xn, Yn)
(setf (are£ *cell* Xn Yn 0) ; Decrement cost

(- (aref *cell6 Xa Tn 0) 1.414))
(cond ((<- (aref *cell* Xn Yn 0) 0) ; If New-cell is fully explored

(setq *backpath-pixel-list*
(append ; Add ito pareint to .he

(get-backrath X. ¥n) Y display list
*backpath-pxel-l st ))

(append (overflow : Explore next cell in dir-
few-cell ; ection of expansion & add
Center-cell) ; any overflow cells.

(list ew-cell))) : Add current new cell to wC
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; to right of overflow cells.
(t (setq 4finished-with-cell-p* ; Else if Newcell- not

nil) nil))) ; fully explored don't add
; it to-wf,and note that
; Center-cell stays on wf.

((and (- Xc -(cor (aref *cell* Xn Yn 1))) i If Newcell's parent is
(- ¥c (cadr (aref 'cell' Xn Yn 1))) ; Center-cell:
(> (aref cell' Xn Yn 0) 0))

(setf (azef *cell* Xn Yn 0) ; Decrement cost.
(- (aref *cell* Xn Yn 0) 1.414))

(cond ((<- (aref 'cell' Xn Yn 0) 0) ; If Newcell is fully explored
(setq 'backpsth-pixel-list*
(append ; Add parents to the

(get-backpath Xn In) ; backpath display
*backpath-pixel-list*))

(append (overflow ; Explore next cell ir dir-

New-cell ; action of expansion & add
Center-cell) ; any overflow cells.

(list New-cell))) ; Add current new cell to wf

; to right of overflow cells.
(t (setq *finished-with-cell-p* : If New-cell is not fully

nil) nil))) : explored don't add it to
: wf,and- note that Center

; must stay on wavef ont.
(t nil)))) ; If Newcell was already explored, don't add it to wf.

;**I,* function overflow: determines whether expansion should .ontinue
into the next cell in the (orthogonal) direction in which

•:*** it has been going, and expands if necessary.
Arguments: the first is a list of the X,Y coords of the cell

into which the wave will overflow; the second is the coords
of the cell from which it overflowed.

"'*'" Note that Center-cell in this function is the variable
called New-cell in orthog-expend, and rarent-cell here is
called Center-cell in- orthog-expand.

:""'** eturned: A list of cells to add to wavefront
• *6&6 Side Effects: cell costs ate deczemented
(defun- overflow (Center-cell Parent-cell)

(let" ((Xc (car Center-cell))
(Yc (cadr Center-cell))
(Xp (car rarent-cell))
(Yp (cadr Parent-cell))
(Xn (f Xc (- Xc Xp))) ; Explore the next cell in the direction
(Yn (# Yc (- ¥c Tp))) ; of the previous expansion
(Mew-cell (list Xn Yn))
(overflow-cost : Check if overflow is at

a boundary;
(cond ('null (aref *cell* Xn Yn 0)) 0) ; if not,decrement overflow

; cell by the (negative)
(t (4 (are! 'cell' Xc Yc 0) ; amount left over from

(aref *cell* Xn Yn 0)))))) ; previous cell.
(cond ((null (aref 'cell* Xn Yn 1)) ; If overflow cell is unexplored,

fsetf (aref 'cell' Xn Yn 1) ; Set overflow cell parent
Center-cell) ; to the explored cell.

(set-opl Xn Yn X% Yc) ; Set Opt-Path-List for (Xn,Yn)
j -I41tre*CeM-*4 X!!-!n-'2' - -

overflow-cost)
(cond (( overf!ow-cont 0)

(setq #11ackpath-plmel-ltt

(append ; Add parent to tho
(get-hackpath Xn Yn) ; backpath display.
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(append (overflow :If mre overflow, expand again,
Hew-cell :and add Newcel1 to wave list.
Center-cell)-

(list New-cell)))
(t nil))) ; Else put nothing on waveftor.t.

(t nil)))) :Else put nothing on wavefroi.

212



M; - ode: LISP; Syntax: Common-Lisp; Package: USER--*-

;""' "declar" contains the declarations of'global variables used
;***** by "opm". It is loaded by function "opm" in file "opm.lisp".

S;A*** This version is for use with maps in the form of a rectangle

;*"* of characters.

;*** Current as of 7 Jun 89

;*** Side Effects: initialization of *cell* and Abouridary* arrays,
;*** and other global variables as !isted below.

* AA AA AAA ***A ** *A hA*A*******A*A******A*************AA******

;*A*06 Global Variables:

(defvar *version*)
;(setf *version* Opure")(setf *vertex-list*_nil)-(,etf *edge-list* nil)

(setf *version* "vertex-edge")
;(setf *version" "diverging-path") (setf *vertex-liot* nil)-(setf *edge-list* nil)
(defvar gincremental-bdry-check*) ;4**** set to 't if check-boundaries should

(setq *incremental-bdry-check* 't) ;*** be done at each expand-cell, nil if not.
(defvar *internal-timel*)

(defvar *external-timel*)

(defvar *internal-time2*)

(defvar *external-time2V)
(defvar *mop-width*) ;****h Max allowable number of columns In the
(setq *map-width* 205) ; map 4. 2 for bordering columns of blanks
(defvar *map-length*) ;**M** Max allowable number of lines in the

(setq *map-length* 155) : map (-153) + 2 (-155) for the bordering lines of blanks

(defvar *magnificationO) ;*A*** Magnification of the screen.

(setq *magnification* 3) ;
(defvar *river-cost*) ; Coat to cross-a river

(setq *river-cost* 16)
(defva: *road-cost*) ;*A**# Cost to use-a road
(setq *road-cost* 0.1)

(defvar *mapline*) ;"** Array to hold the input map: each element

(setf *mapline* ; is a string, each of whose characters-
(Hooke-array ; represents one cell of-the map.

(list Amap-length')))

(defvar *terrain-pixel-list) ; List to hold coordinates
(setq *terrain-pixel-list* nil) ; -of terrain pixels.
(defvar 'boundary-pixel-list) ; List to hold coordinates
(setq *boundary-pixel-list* nil) of boundary pixels.
(defvar *backpath-pixel-list*) ; List to hold coordinates
-(setq Obackpoth-pixel-list* nil) ; of backpath pixels.

(defvar *finished-with-cell-p0) ; r1lg to record if cell- stays on wave.
(defvar #output-stream*) ; Can be used to define output stream
(defvar 'goal*) ;A*0*A coordinates of goal point
(defvar Ocel') ;""' 3-dimen array whose first and second indices

(setf 'cell' are the cell coordinates and whose third inuex

(list Attribute 0 is cost to traverse the cell,
*map-width# decremented as wave passes over cell,
Omap-lenutLI ; Attribute I is list of parent's coordi

4))) if specified, nil if not.

* Attribute 2 in list consisting of the
; character symbol of the cell, -folJowed if
; if applicable by ai edge id as|d vertex flag
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Attribute 3 is coords of ort-path-liat psrent
(defvar *boundaryt) * Bit-valued array to mark region boundaries.
(setf 'boundary' The (XY, 0) elment specifies whether there is

(make-array a boundary to immediate right of cell (X,Y).
(list * The (X,Y,l) element specifies whether there is

*map-width* ; a boundany immediately below cell (X,Y). 
Omap-length' : Altho this array has enough info to specify
2) ; boundaries between pixels, pixel (X,Y) is

:element-type 'bit)) ; plotted us the boundary.
(defvar *edge-list*) ;***** These lists arz for the heuristic version, and
(defvar *vertex-list*) ; list all edge cells with edge id G vertex cells.
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;;; A Mode: LISP; Syntax: Common-Lisp; Package: USSR *

;*0*** "initmap" contains the functions used by "opm" -to examine
;***0* the map symbols and-encode them into elements of the
;***** *cell* array. It is-loaded by function "opm" in-file "op".
;*AAAA This version is for use with maps in the form of a rectangle
,AAAAA of characters.

;****A Current as of 8 Jun 89

;**AAA Input: file "map", an array of cell attributes

AAAAA Side Effects: Loads file "map.lisp", and sets the
;***** elements of the *cell* array according to the

associated map symbol. Adjusts *Aap-vidth*.

;AAA* Function Oinitialize-map" initializes the values of the
;AAAA array *cell* according to th- information encoded

;***** in graphic form in the file "map".
Arguments: none-

;*AA*A Returned: t in all cases.
;**A*A Side-Effects: Loads the Lisp file "map".
:*****A Initializes the arrays *cell* and- *boundIry*
;*A*** and adjusts the vriable *map-width*.
;*AAAA runctions Used: process-line, process-char

-(defun initialize-map ()
(load "map")(linefeed)(linefeed)
(princ "Initializing Hap"})(liaoefeed)
(cord ((equalp *version* "vertex-edge")

-(process-vertex-info *vertex-list*)
(process-edge-info *edge-list*)))

(setq *map-idth* (+ 2 -(length (aref #mapline* 1))
(do ((1 0 (1+ 1)))

((- *map-width* 1)) ; Initialize the top

(process-char #\x-I 0)) ; "buffer zone" row
(do((J 1 -(1+ J)))

((string-equal "eof" (aref kmaplineh 0))
-(do ((Z 0 (1+ I)))-

((- *map-wtdth* 1)) ; Initialize the bottom
-(process-char INx I J))) ; "buffer zone" row

(cond ((>- J *map-length')

-(princ 'I1ARNING: Hap too long, will be truncatedi) (linefeedl
(process-line (aref *mapline* *map-length*) 1 *map-length*)-

(t
(print " Frocessing Hap Row ")(prinl- )(linefeed)
(process-line (aref Omepline* J) 1 -1))))

(princ "rinished Initializing 1'ap) (l.nefeed) (lnefeed))

rA4 unction "process-_liner cvlm-rzc--'.- -

;*AAA argument (a string) up to the max allowed "idth-of the map.
;AA*AA It processes each character and sends a warning
;#A4AA message to the auteen if line i -too lg.
;*U*** Aragunents: Line, a ot-ing
*-0 Returned:- t In all ca_-s,

;*464 Side Effects: Sets a I--rixel border in right & left columns
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;*** represented as an obstacle.

Functions Used: process-char

(defun process-line (I.ine X Y)
(cond- ((- 0 -(length Line))- ; Norma, base case

(process-char I\x 0 Y) ; Initialize the right and left
(process-char #\x X :! ; "buffer zone" columns

(t (process-char (character (subseq Ltne 0 1)) X Y)
(setq X (1+ X))
'(cond ((>- X *map-widtIh* -Abnormal case if map is too wide

(process-char j\% 0 ¥) ; Initialize- the right and left
(process-char O\x (1- X) Y) ; "buffer zone" columns
(princ tIWARMING: Map too wide, will be tzuncatedi) (lJnefeed))

it (process-line (subseq Line 1) -X 7))))

;***'- Function "process-char" decodes each character of the map,
;*h*** setting the cost element and in some cases the parent

;*** of the cell indexed by X and Y, the cell's coords,
; * and the parent of the cell on the Optimal-Path-List

i** Agu:nents: Char, a character, and X & Y, integers.
;** ** Returned: not applicable.

;*'6" Side Effects: Sets the values of the- (X,Y,0) element of the
*cell* array to the cost as specified by the character;

"* in some ca.es sets the values of the (X,Y,l) and (X,Y,3)-
'*** elements for cells having-no parent.
;**** Functions Used: no user-defined functions.

(defun -process-chbr -(Char X Y
&Lux X- X+ Y- Y+)
(setq X- (- X ( 1 *magnifi-:ation*)))
(setq Xf ( K (1 1 *magnification*))}
(setq Y- (- Y (/ 1 6mngnificationA)))
(setq Y+ (4 Y (1 1 *magnificationA)))
(cond ((and (>- (char-int Char) 49) (<- (char-int Char) 57))

fsetf (aret *cell* X Y 0) (- (char-nt Char) 48))
(setf (aref: *cell* X x 1) nil)
(setf (aref *cell* X Y 2) (cons Char (aref -cellA X Y 2)))
(setf (aref *cell* X Y 3) nil):
(cond ((- 1 (aref *cell* X Y 0)) nil)

it (setq terrsin-pixel-list*
(append

(mapcar 'magnify-pixel
(list

(list X )))
*terrain-pixel-list*)) )))

((equal Char 1\ )
(setf (aref *cell* X Y 0) nil)
(setf (aref *cello X Y 1) (list X ))
(setZ (are! "cellV X Y 2) (cons Char (aref cellA X T 2)))
(saet (aref *cell* X Y 3) (list X Y)));

((equal Char Mx)
(etf (aref *cell' X Y 0) nil)
1setf (atef *cela* X Y 1) (list X Y))
(setf (are! *cell* X Y 2) (cons Char (araf. *cell* X Y 2)))
(,5etf (aref- cellO X Y 3) (list X Y))
(setq X- (- X C/ 1 *magnIficatLionO)))
(setq XI (4 X (I Omsgnificationo)) )
(setq Y- (- Y I magniffication*)))-
(zetq X1 (4 Y ( 1 *moanification*)))
(3et *tertaln-pixel-liatll

(appen|d

-imapcar 'magnify-pixel
(list (in5t X- Y-)

(list X.- Y)
(list X- Y+)
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(list X Y-)
(list X Y)
(list X Y+)
(list X+ Y-)
(list X4 Y)
(list X+ Yq)))

Oterrain-pixel-listA)))

((equal Char 1\r)
(setf (aref 'cell* X Y 0) *river-cost*)

(setf (aref *cell' X Y 1) nil)
(setf (aref *cell* X Y 2) (cons Char (aref *cell* X Y 2)))
(setf (aref *cell* X Y 3) nil)
(setq X+ (4 X (1 *magnification*)))

(setq Y- (- Y (1 *magnification*)))

(setq Y+ (+ Y (U 1 *magnification*)))

Jsetq *terrain-pixel-list*

'append
(mapcar 'magnify-pixel

(list (list X+ Y-)

(list X+ Y)
(list X+ Y4)))

*terrain-pixel-listo)))
((equal Char #\p)

(setf (aref 'cell* X Y 0) *road-cost*)

(sett (aref *cell* X Y 1) nil)
(betf (aref *cell* X Y 2) (cons Char (aref *cell* X Y 2)))

(se tf (are *cell* X Y 3) nil)

(setq Oterrain-pixel-list*
(cons (list X Y) 'terrain-pixel-list')))

((equal Char I\G)

(setq *goal* (list X Y))
(setf (aref *cell' X Y 0) 1)

(setf (aref *cell* X Y 1) (list X Y))
(setf (aref *cell* X Y 2) (cons Char (aref *cell* X Y 2)))

'setf (aref *cell* X Y 3) (list X Y)))))

:"'* Function "process-vertex-info" puts the character v into each
:"'* *cell* X Y 2 as a list (#\v). This becomes the third element of
:""' this list after "process-edge-info" and "pzocess-char" happen.
(defun process-vertex-info (v-list)

(setf (aref *cell" (caar v-list) (cadar v-list) 2)

(list #\v))

(cond ((null (cdr v-list)))

it (process-vertex-info (cdc v-list)))))

;***0* runction "process-edge-info" puts the id number of the appropriate

edge into *cell' X Y 2 as the first element of the list there.
.*A*A# This becomes the second element of the list after "process-char"

:*A&#* is executed.

:"'" "e-list" is a list of triples: e.g.,
; *" M ((X Y 13) (U V 21) ... (z W 2)), wheze for example, 13 is the

;'"'** id nupber of the edoe on which cell (X Y) is located.
(defun proceis-edge-info (e-list)

IOe C(X i(r~t ffA rtat,-i4
(Y (second (first e-list)))

(EdgeID (third (first e-list))))

(cond ((characterp ; If cell is a vertex, and
(first (atef 'cell* X Y 2))) ; no other edge Id has been

(setf (aref 'cell* X Y 2j ; s6t for this cell, set 1st
(cons (list EdgelD) : element of list to EdgeZO,
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(aref *cell* X Y 2))))
((null (first (aref *cell* X Y 2))) ; If cell is not a vtx, and no
(etf (aref *cell* X Y 2) ; other -edge id--has been set,.

(list (list VdqeID)))) s et ZdgeID

((listp (first (aref *cell* X Y 2))) ; If another edge id has
(setf (aref *cell* X Y 2) ; been set for this cell,

(cosis (colts EdgelD ; cons EdgeID onto the
(first (aref *cell* X-Y 2))) ; 1st element of the
(rest (azef *cell* X Y 2)))))) ; previous list.

(cod ((null (rest e-list)))
(t (process-edge-info (rest e-list))))))



M' ode: LISI; Syntax: Commton-Lisp; Package: USER--

""iFile "bdry" contains the functions which detect and-xecord
"'boundaries between terrain cells. It also sets and checks
""equivalence between optimal-path lists.

'iCurrent as of 27 Jun 89

;"'Function "check~-all-bounderies" iterates through the whole umap
Sto find boundaries. It is used when boundary-checking is done

"' after completion of wavefront expansion.
"'Arguments: Honie

;4~ Returned: not applicable
(defun check-all-boundaries ()

(sett *boundary-pixel-list' nil) (lineteed)
(cond
((equal "pure" *version*)
(do (( 1 (1+ 3))

((string-equal "eof" (aref 'mapline* 3)_)
(linefeed) (princ "Finished with Boundary Detection") (linefeed) (l~nefeed))

(princ "Pure bdry Detection for Row ") (prini 3) (1inefeed)
(do -MI-1 (I+ IM)

((>- I 'map-width*))
(cond ((null (aref -_ell* (1+ 1) .1 1)-)) ; Check (1,J) against

((pure-bdry-condition ; (1+2,J)
I .7 (1+ 1) 3)-

(add-to-bdry I .7 (1+ 1) J),))
(cond ((null, (aref *tell* 1 (14 3) 1))) ; Check (1,J) against

((pure-bdry-condition ; (1,3+1)
I .7 I (I+J)-)

(add-to-bdry I 3 I (1+ 3))))
(cond ((null, (si-f 'cell* (1 1 ) (1+ 7)- 1))) :Check (1,3) against

((pure-bdry-condition 1,3)
I13 (1+ 1) (1+ 3))

(add-to-bdry I 3 (1+ 1) (1+- J))-))-))
((equal "diverging-path" vrso'

(do (( 1 (1+ 3))

((utring-equal reof" (aref Omapline* 3))I (linciced) (princ "Finished With Boundary Detection") (linefeed) (linefeed))-
(princ "Diverging-Path UBdry Detection for-Row ") (prinli3) (linefeed)
(do ((1 1 (14 1)))

((>- I *map-width'))
(cond ((null (aref *cell* (1+ 1) J 1))) ; Check (1,J) against

((diverging-path--bdry-condit~ion ; (1+1,J)
i 3 (1+ 1) J)_

(add-to-6dry I1 3(1+ 1) 3)))
(cond- ((null (aref Ocell' 1 (11 ) M-)) ; Check 11,3) agairat

((dive~ging-path-bdry-condit ion ;(,3Z
I3I(14 3))

(add-to-bclry I 3 1 (1-1- ))))
(cond ((null (aref 'cell' (1+ 1) (14 3) I))) :Check (1,3) against,

((diverging-pati-bdry-conditlon M Z~13l
T 1; (17 - . .)-

(add-to-bdry I 1 (1+ 1) (1+ .f.))
((equal "vertex-edge" *version*)

(do ((3 1 (1+- 3)) )
((string-eqits] "eof" (aref *marplineO 0))
(linefeed)-(princ "Finished With Boundary Detection") (linefeed) (Ii nefeed))

219



jprinc "Vertex-Edge Bdry Detection for Row ") (prinl 3)(linefeed)
(do M( 1 (14 19)))

((>- I *map-width*))
(cond ((null (aref *cell* (1+ I) 3 1))) : Check (1,J) against

((vertex-edge-bdry-condition ; (1+1,3)
I - (1+ o) 3 0 (list I 3 (1+ I) 3))

(add-to-bdry I J (1t I) J)))
(cond ((null (aref *cell* I (1+ J) 1))) ; Check (1,0) against

((vertex-elge-bdry-condition ; (I,3+1)
I j 1 (1+ J) 0 (list I 3 1 (1+ J)))

(add-to-bdry I J I (1+ 3))))
(cond ((null (aref *cell* (1+ 1) (1+ J) 1))) : Check (1,J)- against

((vertex-edge-bdry-ccndition ; (I+1,J+1)
I 3 (1+ 1) (1+ 3) 0 (list I 1 (1+ 1) (1+ 3)))

(add-to-bdry I 3 (1+ 1) (1+ 3)))))))))

;**06* Function "check-for-boundaries" checks each of a cell's four orthogonal
;**" neighbors for the existence of a region boundary. It is used
;** when boundary-checking is done incrementally during wave expansion.
;*#i** Arguments: Center-cell,a list of the coords of the cell being

checked and aux -(Jocal) variables to hold the coords
;**A** Returned: not applicable
;**** Side Effects: if bdry exists, the appropriate pixels are added

:*** to *boundary-pixel-list* and *boundary-bit*(XY) is set.
* F runctions Used: check-neighbor

(defun check-for-boundaries (Center-cell
&aux X Y)

(setq X (car Center-cell))
(setq Y (cadr Center-cell))
(cond
((equal- "vertex-edge" *version*)

(cond ((null (aref *cellf X (1- Y) 1)))- ; Check (XY) against (X,Y-1)
; If -(X,Y-1)'s parent is undefined-
; boundary cannot be checked yet,

((vertex-edge-bdry-condition ; Else it can so call bdry condition.
X Y X (a.- Y) 0 (list X Y X (1- y)))

(add-to-bdry X Y X (1- Y)-))) : If bdry-cond - T, add to bdry-list.
(cond- ((null (axef *cellA (1- X) Y 1)))

((vertex-edge-bdry-conditiois ; Check (X,Y)- against (X-lY)
X Y (1- X) Y 0 (list X Y (1- X) Y))

(add-to-bdry-X Y (I- X) Y))),

(cond ((null (aref *cell* X (1+ Y) 1)))
-((vertex-edge-bdry-condition : Check- (X,Y) against (XY+l)

X Y X (1+ Y) 0 (list X Y X (1+ Y)))
(add-to-.bdry X Y X (1+ Y)-)))

(cond ((null- (aref *cell* (14 X) Y 1)))
((vertex-edge-bdry-condition ; Check (XY) against (XIY)

X Y (1 X) Y 0 (list X Y (1+ X) Y)-)
(add-to-bdry X Y (14 X) Y))))

((equal *pure" Aversion*)
(cond ((null (aref *cell* X (1- Y) 1))-) ; Check (X,Y) against (XY-I"

; f (XY-1)'s parent is iililv'Lned
; boundary cannot be checked yet,

((pure-bdry-condition ; Else -it can so call bdry condition.
7 7 -V (1- YJ-)

(add-to-bdry X Y X (1- Y))) ; If bdry-cond - T, add to bdry-list.
(cond ((null -(aref "cello (1- X) Y A)))

((pure-bdry-coridition ; Check (X,Y) against (X-,Y)
X Y (1- X) Y)

(add-Lo-bd.y X Y (W-- Y) M))
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(cond ((null (aref *cell* -X (1+ Y) 1)))
((pure-bdry-condition ; Check (X,Y) against (X,Y+l)

x Y X (1+ ))
(add-to-bdry X Y-X (1+ Y))))

(cond ((null (aref *cell* (1+ X) Y 1)))
((pure-bdry-condition : Check (X,Y) against (X+lY)

X Y (1+ X) Y)
(add-to-bdry X Y (1+-X) Y))))

((equal "diverging-path" *version*)
(cond ((null (aref *cell* X (1- Y) 1))) ; Check (X,Y) against (X,Y-l)

; If (X,¥-1)'s parent is undefined
; boundary cannot be checked yet,

((diverging-path-bdry-condition ; Else it can so call bdry condition.
X Y x (1- ))

(add-to-bdry X Y X (1- Y)))) ; If bdry-cond - T, add to bdry-list.
(cond ((null (aref *cell* (1- X) Y 1)))

((diverging-path-bdry-condition ; Check (X,Y) agairct (X-l-,Y)
X Y (1- X) Y)

(add-to-bdry X Y (1- X) Y)))
(cond ((null (aref *cell* X (1+ Y) 1)))

((diverging-path-bdry-condition ; Check (XY) against (X,Y+1)
X Y X (1+ Y))

(add-to-bdry X YX -(14 Y))))
(cond ((null (aref *cell* (1+ X) Y 1)))

((diverging-path-bdry-condition ; Check (X,Y) against (X+l,Y)
X Y (1+ X) Y)

(add-to-bdry X Y (1+ X) Y))))))

* A A AA AA A A * * A A A A A** *A* A A A A AA** ** A A A A A AA** * A*** A A A

;***** Function "vertex-edge-bdry-condition" checks if-there is a boundary
;***** bctween two cells by seeing if their OPL's have-equivalent "critical"
;A AAIp points, where a critical point is a turn-cell which is on an edge

AAAA or is adjacent to a terrain-feature vertex.
A**A Arguments: Coords of 2 cells which may be in different regions;
;*AA Flag which is 0 normally, but for double-edged cells on the

;****AA second recursive call- with that cell is a list of the left-over edge-id,
AA*** and for edge-interior pairs is 1 or (edge-id) after initial call.

;A*A** Returned: nil if condition does not hold, and T
.* *A*A if condition does hold.

;*** Side- Effects: none

(defun vertex-edge-bdry-conditon (Xl Y1 X2 Y2 Flag StartPoints)
(let* ((Xsl (first StartPoints)) ; bdry cond based on vertex

(Ysl (second StartPoints)) ; and-edge turn points.
(Xs2 (third StartPoints))
(Y92 (fourth StartPoints))
(Parentl (first-distinguished-opl-cell Xl Xl Xsl Ysl))
(Parent2 (first-distinguished-opl-cell X2 Y2-Xs2 Ys2)-)
(Xpl (first Parentl))
(Ypl (second Varentl))
-(Xp2 (first Parent2))
(Yp2 (second PazenL2) ')

(cond
((not (equal ; Case A: If the start-pts themselves have

(first (aref *cell* Xsl Ysl 2)) ; different costs, they are in different
4fLirt. jstref- *cell* A2 Y- c ~z~os.~h7 ondi.?on fireb- only

It) on the 1st call to v-e-b-c.
((and Case 01: If Sl- is edge (& SP2 is inside same

(< 1 (length (are *cell-* Xsl Ysl 2))) ; rgn, by A above) and Parent of 2
(equal ; is on the same edge as SrI, and

(second (aret 'cellO Xsl Yal 2)) ; SPI is not the 1st of a pair -f
(third Parent2)) ; double-edge cells, do not put a
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(not (equal : bdry between SP1 & SF2.
(second (aref *cell* X91 Ysl 2)) ; (This case makes edge celis&
(third Parentl)))) ,In'trior Cells be In same rgn.)

nil)
((and ;Case D2: If SF2 is edge (6 SF1 is-inside same

(< 1 (length (aref *cell* Xs2 Ys2 2))) ; rgn, by A above) and Parent of I
(equal ; is on the same edge as SF2, and-
(second (aref *cell* Xs2 Ys2 2)) ; SF2 is not the 1st of a pair of
(third Farenti)) ; double-edge cells, do not put a

(not (equal ; bdry between SPI & SF2.
(second (aref *cell* Xs2 Ys2 2)) ; (This case makes edge cells
(third Parent2)))) ; interior cells be in same ign.)

nil)
((and (-Xpl Xp2) ; Case C: if rarentl & Psrent2 are the some,

(Ypl Yp2)) nil) ;Ptl & t2 are in same rer'on.
((and (-3 (length Parentl))

(3 (length Parent2))-) ; Case 0: If parenits are both edge cells:
(cond

((set-equal (third Parenti) :Case Dl: If edge-id lists are the same,
(third Parent2)) ; chk next pair of cells on OPL recursively

(vertex-edge-bdry-condition ; (Normal case)
Xpl Ypl Xp2 Yp2 0 StartPoints))

(-(and ; Case D2:
(subsetp (third Parent2) ; Else if Parentl is a double-edge cell and

(third Parentl)) ; one of its edge-ids - edge-id of Parent2,
(not (listp Flag))) ; and this is the lot time Parentl has been

(veztex-edge-bdry-condition ; checked in this set of calls to v-e-b-c
XI Yl Xp2 YpZ ; recursively check Orl, with Point 1 and
(set-difference ; Varent2, with flag :- (utlmatched-edge -id)

(third Porentl) :of-IFarentl. (Only applies where call 1 to
(third Porent2)-) ;is on two edges.)

StartPoints))
((and ;Case V3;

(subsetp (third Parenti) ; Else if Parent2 isa double-edge cell-and-
(third Parent2j-) ; one of its edge-ids - edge-id of Farentl,

(not (listp Flag))) ; and this is the 1ot time Parent2 has-been
(verLex-edge-bdry-condition ; checked in this set of calls to

Xpl Ypt X2 Y2 ; v-e-bdry-cond, recursively check OFI. with
(set-difference ; Farentl and Point2, with flag :-
(third Parent2) ; (unmatched-edge-id) of Parent2.
(third PArentl))

StartPoints))
((an~d ;C5se D2, Second Pass:

(subsetp (third Parent2) : Else if Parentl is a double-edge cell and
(third Parentl)) ; its previously unmatched edge-id-- id of

(equal Flag P arent2,-recursively check OPI. from
(third Parent2))-) ;Parentl & Parent2, with Flag - NIL.

(vertex-edge-bdry-condition
Xpl Ypl Xp2 Yp2 0 StartPoints)-)

((and ; Case D3, Second rass:
(subsetp (third Farenti) ; Else if t'sreeit7 is a doimble-edge cell and

(third Parent2)) ; and previously unmatchied edge-id - id of
(equal Flag Parentl, recursively check OPL from

(third Parentl))-) ;Parenti and Pazent2, with Flag - NIL.
(vertex-edge-bdry-condition-

Xpl Ypl Xp2 Yp2 0 Start~oints))
(t ItM) ; Case 04: Otherwise pts are in different rgns

(t Itl) '-Ccc Z: ZC.MrS Pjs- rr ill differaent rdgn.

;''Function "firat-distinouishied-opl-cell" finds the first cell on
:' the op1 of Ft X,Y which is a "distinguished" point. It is caller!

' by function "heuristic-bdry-condition"
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;"~ Arguments: coords of the cell whose opi is being checked
.4" Returned: a list of the-coordinates of the distinguished-cell,

4444' followed if it is an edge cell by the edge id num'.
;**00* Side effects: none
(defun first-disitinguished-cpl-cell (X Y Xs Ya
6aux flcell)
(cond ((equalp ; If opl-parent-point, cell is obstacle

(list X Y) : or goal, so return the point itself.
(aref *cell' X Y 3)) (list X Y)) ; (base case 2)

((5etf Dcell (distinguished-cell ; If opl-paront is distinguished, rtn
(first (atef Acell' X Y 3)) ; coords of parent and-possibly the
toecond (aref *cell* X Y 3))) ; edge id number. (base case 3)

(cond
((- 3 (length Dccli)) Dcell) ; if ficell is edge cell, rtn Dcell.
((not (equal ; If Dceli is vertex and this path

(first (aref *cell* X3 Ys 2)) ; started outside the terrain feature
(first (aref *cell* ; of which Dcell is a-vtx, rtn Dceli.

(first Ocell)
(second-Dcell)
2))))

Dcel)
(t (first-distinguighed-opl-cell ; Else, recurse to look

-(first (aref *cell* X Y 3)) ; at next cell on opl.
-(second (aref *cell* X Y 3))
X3 Ys))))

(t (first-distinquished-opl-cell -Else, recurse to look
(first (aref *cell' X Y 3)) :at next cell on op1.
(second (aref *cell* X-Y 3))
X3 Ys))))

:''Function- "distinguished-cell" determines whether cell is an-edge
600t or adjacent to a terrain-feature v'ertex.

= ;*404 Arguments: coords of tbe -cell being checked for disting. status
:A.* Returned: (X Y erdge-id-list) if cell is on an edge

(X Y) if cell- is adjacent to a vertex
nil if cell i3sriot distinguished

;44 Side effects: none
(defun distinguished-cell (X Y)

W- (0+ M)
(Y- 01- M)
(Y+ (1+ Y)))

(cond
((and (< 1- (length (aref *cell* X Y 2)) If mXy) is edge cell

(equal and is -the first of a
(second (aref 4cell' X Y 2)) *pair of adjacent cells
(second ,of the game edge In tha

-farce *cell# same backpatbi
(first (aref 'cell' X Y 1)M retuzrn nil.
(second (aref *cell# X Y M)
2)))) nil)

W- I (lenal~h (areC *cell' X Y 2))M If (X,Y) is a single edge ce'll,
(list X Y (second (aref -"cell' X Y 2))) return coords 6 edge-id-lisE.
((and (- 3 -(length (aref *cell& X- Y 2)))

(not (equalp (first (aref *cell* X Y 2)) :Else if (X,V) is
(first: -(aref *cell' X- Y 2))))) ;adjacent to a vertex

(list X- M) and is outside the

(not (equalp (first -(aref *cell* X Y 2)-) :which- the vertex is
(first (areE *cell* X- Y+ 2))))) :a part, return coords

(list X- Y11) ;of vertex.
(a nd. (- 3- -(length farce 1 ell' X Y- 2)-))

(not (equialp (firnit (aref "cell" X Y 21)
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(first (aref *cellA X Y- 2)))))
(list X Y-))

((and (- 3 (length (aref *cell* X- Y- 2)))
(not (equalp (first (aref Acell* X Y 2))

(first (aref *cell* X- Y- 2)))))
(list X- Y-))

((and (- 3 (length (aref Acell* X Y+ 2)))
(not (equalp (first: (aref *cellA X Y 2))

(first (aref AceIIA X Y+ 2)))))
(list X Y4))

((and (- 3 (length (aref *cell* X+ Y- 2)))
jiot (equalp (firot (aref cel.1A X Y 2))

(first (,ref *cell* X+ Y'- 2)))))
(list X+ Y-))

((and (- 3 (length (aref *cellA X+ Y 2)))
(not (equalp (first (aref *cell* X Y 2))

(first (aref *cell* X+ Y 2)))))
(list X4 Y))

((and (- 3 -(length (aref Acell* X+ Y+ 2)))
(not (equalp (first (brief Acell* X Y 2))

(first (aref *cell* X+ Y+ 2)))))
(list X+ Y4))

(t nil)))) ; Else (X,Y) is not adjacent to a vertex
; and is not an edge cell

:A*A*A Function "add-to-bdry" sets the boundary bit to 1 and
;*OO*A adds boundary pixels to the front of the boundary list
;A*,%& unless one of the argwnents is an obstacle cell.

:AooAA Argument: coords of two points whose boundary
:A**AA is to be added.
;*A** Returned: always returns T
;AAAAA Side effects: Sets boundary* bit to 1 and
;*hook sets *boundary-pixel-]ist* to the previous
;*A*AA list with the new pixels appended to the front.

(defun add-to-bdry (Xl Y1 X2 Y2
Aoux Xa Xb Ya Yb)
(cond

((or (char-equal \Xx (car (aref *cell* X1 Yl 2)))

(char-equal #\x (car (aref *cell* X2 Y2 2))))'t)

(t
(setq -Xa (4 XI (/ (- X2 XI) *magnification*)))
(setq Ya (+ Yl (/ (- f2 Yl) *magnification*)))
(setq Xb (+ Xl ( 2 (V (- X2 Xl) 6magnificatJon*))))
(setq Yb (+ Y1 (A 2 (/ (- Y2 ¥1) *magnification*))))

(setf (bit *boundaryA
(min XI X2) ; Set the boundary
(min Yl Y2) ; flag bit of the upper

(cond ((- 0 (- Xl Y2)) 0) ; or leftmost cell.

(t M)
1)

(setf Obound(ary-pixel-list*
(append

(mapcar 'magnify-pixel

(cond

((- Xl X2)
(list (list (-X (I 1 -*magnification*)) Ya)

(li vt X1 Ya)
(list (1 Xl (I *magnification*)) Yn)

(Jist (-Xl (I 1 *Anagnification6)) Yb)
(list X1 Yb)
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(list (+ Xl (/I 1 *magnification*)) Yb)))
((- Y T2)

(list (list Xa (- TI (II *magnification*)))
(list Xa I)

(list Xa (+ T1 (I 1 *magnification*))
(list Xb {- T1 (/ 1 *magnification*)))
(list Xb T)

(list Xb (+ Y1 (1 1 *magnification')))))

(t
(list (list Xa Ya)

(list Xa Yb)

(list Xb Ya)
(list Xb Tb)))))

*boundary-pixel-list*)) 't)))

"" Function "set-opl" sets the coozds for a cell's predecessor
"*" in the optimal-path-list.
;'" Arguments: Xn and Yn the coords of the new cell with OPL being
~** set and Xp and Yp the coords of (Xn,Yn)'s parent on backpath

;*** Returned: not applicable

;***** Side Effects: sets *cell'(Xn,Yn,3) with n's predecessor on OPL
; * Functions Used: on-line-between

(defun set-opl (Xn Yn Xp Tp)
(cond ((< I (lepgth (aref *cell* Xp Yp 2))) If P is an edge cell, set

(setf (aref *cell* Xn Tn 3) (list-Xp Tp))) prod of N to P.
((on-line-beLween Xp Yp Xn Tn ; If P is between N

(first (aref *cell' Xp Yp 3)) : C pred of P on OPL,
(second (aref *cell* Xp Tp 3))) ; set pred of N to

(setf (aref *cell* Xn Yn 3) (aref *cell* Xp Yp 3))) ; pred of P.
(t (setf (aref Ocell* Xn Yn 3) (list Xp Yp))))) ; Else set pred of II

to P itself.

"" Function "pure-bdry-condition"
;"" Arguments: Coords of 2 cells which may be in different regions

*'* Returned: nil if condition does not hold, and T

;A'''& if condition does hold.

;:6460 Side Effects: none

(defun pure-bdry-condition (XI il X2 Y2) ; "Pure" boundary condition:

(let' ((Xpr (car (aref *cell* Xl Yl 3))) ; If OPLs are equivalent,

(Ypl (cadr (aref *cell* Xl Ti 3))) ; return nil, else return T
(Xp2 (car (aref 'cell' X2 Y2 3)))
(Yp2 (cadr (scef 'cell* X2 Y2 3)))
(Xppl (car (Are! 'cell* Xpl Ypl 3)))
(Yppl (cadr (aref 'cell* Xpl Ypl 3)))
(Xpp2 (car (aref 'cell' Xp2 Yp2 3))) ; OLs are equivalent if
(Ypp2 (cadr (are! *cell* Xp2 Yp2 3)))) ; first cells in each

(cond ((and (- Xpl Xp2) ; OPL are equivalent, ie,
(- Y Tp2)) nil) ; if they are the same,

or if one is in the
((on-line-incl-between : first leg of the

Xpl Ypl Xp2 Yp2 Xpp2 Ypp
2
) nil) : OPL of the other

((on-line-incl-between

XpZ Tp2 Xpl Ypl Xppl Yppl) nil)

((on-line-incl-between
Xpl Ypl X2 Y2 Xp2 Yp2) nil)

((on-line-incl-between

Xp2 Yp
2 

Xl Y Xpl Ypl) nil)
(t (add-to-bdry XI Y X2 Y2)))))
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; A A runction "diverging-path-bdry-condition"
;***** Arguments: Coords of 2 cells which may be in different regions
:***** Returned: nil if condition does-not hold, and T
:***** if condition does hold.
;**AAA Side Effects: none

(defun diverging-path-bdry-condition (Xc Yc Xn Yn
Saux PC PXc PYc PPc PPXc PFYc PPPC FPPXc PPPYc PN PXn PYn PPn PPXn PPYn PFPN PPPXn PPPYn

(setq-PC (aref *cell* Xc Yc 1))
(setq P" (aref *cell* Xn Yn 1))
(setq PXc (first PC)) ; Find Center-cell's
(setq PYc (second PC)) ; parent, grandparent, and
(setf PPC (artf *cell* PXc PYc 1)) ; great-grandparent
(setq PPXc (iirst rPC)
(setq PPYc (second rPC))

(setf PPPC (aref *cell' PPXc rpYc 1))
(setq PPFXc (first FPPC))
(setq PPPYc (second PPPC))
(setq PXn (first Pit)) ; Find Neighbor-cell's
(setq 'Yn (second P11)) ; parent, grandparent, and
(setf PP" (aref Acell* PXn PYn 1)) ; great-grandparent
(setq PPXn (first PPtH))
(setq PPYn (second PPN))

(setf PPET (aref *cell* PPXn PPYn 1))
(setq PPPXn (first PPPH))
(setq PPPYn (second PPPU))
(cond ((and (- Xn PXn) (- Yn PYn))) ; Keeps obst from causing bdry.

((bdry-condition-1 ; If greatgp's are separated
PPPXc PPPYc PPPXn PPPYn) ; by more than two, cells are

(add-to-bdry Xc Yc Xn Yn)) ; in different regions.
((bdry-condition-2 ; If cell and neighbor's

Xc Yc PXn PYn) ; parent are in different
(add-to-bdry Xc Yc Xn Yn)) ; regions, so are cells.

((bdry-condition-2 ; If parents are in
PXc PYc PXn PYn) ; different regions,

(add-to-bdry Xc ¥c Xn Yn)) ; so are cells.
-((bdry-condition-3 ; if gp's are separated by an

PPXc PPYc PPXn PPYn) ; obst or river cell, there
(add-to-bdry Xc Yc Xn 'n)) ; is a bdry btwn cells.

(t nil)))

;*-0 Function "bdry-condition-l"
;*&6"" Arguments: Coord2 of 2 cells which-may be in different regions
;****" Returned: nil if condition does not hold, and T
;*AA** if condition does hold.
;0*AAA Side Effects: none

(defun bdry-condition-l (Xl Yl X2 Y2)
(cond B Boundary condition 1:

((or (< 2 (abs (- XI X2))) ; If cells are more than 2 cells
(< 2 (abs (- Y 2))))) ; apart, return 'trvie"

(t nil)))

;""* Function "bdry-condition-2"
;6**** Arguments: Coords of 2 cells which may be in different regions
;*** Returned: nil if condition does not hold, and T if
;**.* condition does hold.

;'1" Side Effects: none

(detur, bdry-condition-2 (XI Yl X2 Y2)
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(cond 
; Boundary condition 2:

((and(- 1 (+ (abs C- Xl X2)) ; If cells are adjacent,
(abs C- Xl Y2))))

(not (equal (list Xl Yl) ; and one is not the
(aref *cell* X2 Y2 1))) ; parent of the other,(not (equal (list X2 Y2)
(aref *cell* xl l 1)))I- 1 (bit *boundary* ; and bdry bit is set,
(min X1 X2)
(min Y. Y2)
(cond ((- 0 (- Y1 Y2)) 0)(t 1)))))

't) 
; then return "true"(t nil))) : else return "nil"

* Function "bdry-condition-3" checks if points are separated; * by exactly one obstacle or river cell. If so, under the;***** circumstances in which cond-3 will be called, they are in
** different regions.

; * Arguments: Coords of 2 cells which may be in different regions; * Returned: nil if condition does not hold, and T
;** if condition doea hold.
; * Side Effects: noneN NOTE: nested cond's are arranged as they are to detect cis soonas possible when the conditions will not hold, because this test;.**#A must be run 4 times for every cell in the map, and only occasionally;***A. will -the w2,-0 conditions be true.

(defun bdry-conditlon3. Xl-YI X2 Y2) ; If celi are 2 apart horizontally,(cond 
and 0 apart-vertically, and((and C- 2 Cbbs !- xi X2))) ; if cell between them is an obstacle(- 0 (- Y1 Y2))) ; or river, their children are in(cond ; different regions.

((or (char-equal \x (aref *ellA (V (+ Xl X2) 2) Yl 2))(char-equal *\r (aref *cell* C/ (/-XI X2) 2) Yl 2)))

((and (- 0 (- Xl- X2)) ; Same as above -for 2 apart verticallyf- 2 (abs C- -1 Y2))) and-0 apart horizontally.
?cond

((or (*bar-equal J\x (aref *cell* XI (4 l Y2) 2) 2))(char-equal #\r (aref 'cell' XI (+ Yl Y2) 2) 2)))

(t nil))
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M--Hode: LISP; Syntax: Commosr-Lisp; Package: USER-*-

;** "utils.lsp" contains several utility functions used by "opm"
;***** found in file "opm.llcp" and r .lated functions.

;A**** Current as of 7 Jun 89

;44*4* Function "on-line-incl-between" determines whether the first point
;A***A is between the second and third, inclusive.

Arguments: X & Y, Xi & Yl, X2 & Y2, coords of three pointJ

Returned; non-nil if (X,Y) is strictly btwn (XIYl) & (X2,Y2),
or nil otherwise.

Side Effects: none

(defun on-line-mincl-between (X Y Xl Yl X2 Y2)
(cond ((aad (-X '11) (-Y Yl))) ; If (X,Y) - (X1,Yl) or

((and ( X X2) (Y Y2))) ; (X,Y) - (2,Y2), return T
((and (or (< Xl X X2) ; If (X,Y) is strictly

(> Xl X X2)) ; inside the rec.angle
(or (< Yl Y Y2) ; formed by the line

(> y1 Y Y2)) ; endpoints, check by

(- (/ C- X YI) ; comparing slopes whether
(- X Xl)) ; point is on line.

(] (- Y Y2)
(- X X2)))))

((and (- X Xl X2) ; If line is vertical, check by
(or (< Y1 Y Y2) ; comparing Y coordinates.

(> Yl Y Y2)))
((and (- Y Yl Y2) ; If line is horizontal, check by

(or (< XI X X2) ; comparing X coordinates.
(> XI X X2))))

(t nil))) Else return NIL

;""" runctian "on-line-between" determines whether the first point
;00*&* is strictly between the second and-third.
;***AA Arguments: X & Y, Xl A Yl, X2 & Y2, coords of three points

;*A*AA Returned: non-nil if (X,Y) is strictly btwn (XlYl) & (X2,Y2),

;*"'** or nil otherwise.
Side Effects: none

(defun oie-line-between (X Y Xl Y1 X2 Y2}

(cond ((and (or (< Xl X X2) ; If (X,Y) is strictly
(> Xl X 2 2)) ; inside the rectangle

(or (< Yl Y Y2) ; formed by the line
(> Y1 Y Y2)) ; endpoints, check by

(- (/ (- Y YI) ; comparing slopes whether
(- X Xl)) ; point is on line.

(/ C- Y Y2)
C- X X2)))))

('and (- X Xl X2) ; If line is vertical, check by

for (< YI Y Y2) ; comparing Y coordinates.
f> "1 Y "211))

((and (- Y Yl Y2) ; if line is horizontal, check by
(or (< X1 X X2) ; comparing X coordinates.

(> Xl X X2))))
(t nil))) ; Else return fill

:0'," Function "magnify-pixel" takes a pair of pixel coordinates
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;AAA** and returns coordinates which are k times magnified.
;" * Argument: Pixel, a list of two numbers, and K, the magnification.
;040 Returned: a list of two numbers, each number

being -K times the original.
Side Effects: none

(defun magnify-pixel (Pixel)
(list (O magnification* (first Pixel))

*A magnification* (second Pixel))))

;***A* runctio~i "magnify-pixel-list" takes a list of pixel coordinates
;'*A40 and returns a list which Is k times magnified.

AAA Argument: Pixel-list, a list of lists of two numbers each,
and K, the magnification.

;AAA Returned: a list of lists of two numbers, each number
;AAAAA being K times the original.

AAA Side Effecti: none
(defun magnify-pixel-list (Pixel-list)

(cond ((null Pixel-list) nil)
(t (cons (list (A*magnification* (first (first Pixel-list)))

(* magnification* (second (first Pixel-llat))))
(magnify-pixel-list (rest Pixel-list))))))

;h**A* Function get-backpath finds a cell's parent, and gives the
;*AA*.A pixels fromn the cell to the parent, ittcluding the cell.

This version only works for *magnif A - 2 or 3
Argument: X & Y, coords of cell whose backpath is required

;10*1* Returned: a list of pixel coords
:*4** Side Effects: none

; 1 A* *A

(defun get-backpath (X Y
&auy. Parent-cell Xm Ym Xp Yp)
(cond ((null (aref *cell* X Y 1)) nil)

(t
;setq Parent-cell (magnify-pixel (aref *cell* X Y 1)))
(setq Xp (first Parent-cell))
(setq Yp (second Parent-cell))
(setq Xm (Ami.nification* X))
(setq Yn (A*magnification* Y))
(list (list XM Yin)

(list (+ Xsn(I( Xp Yin) -;magnification*))
(in I( Yp i'm) AmagnificatlonA)))

(list J+ Yin (A 2 (I('Xp Yin) 14 .nagnification*)))
(4' Yi (A 2 1(-Yp Yin) *iagnification*))))))))

;**A Function get-all-backpaths finds the backpaths from ezery cell
:*tAon the map and puts them in pixel form into *backpath.pixelliat*

(defun get-all-backpaths ()
(sctq 6backpath-pixel-list* nil)
(do ((J 1 (1+ J)))

((string-equal "eof" (aref Amapline* J)) *backpath.pixel..liat*)
(do ((1 1 (1+ 1)))

(j- (length (aref *msplitte* 1)) 1))
(setq *backpath-pixel-if

-(accend
(get-backpath 1 0)
*backpath-pxel-l 4 stA)))))

;*A*4A Function set-equal checks If two setm are the same.
*44 Arguments: Setl and Set2, two lists treated as sets.
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;*** Returned: T if Setl and Set2 are the same, disregarding

;AAA*& repeated elements, NIL othetwise.
(defun set-equal (Seti Set2)

(cond ((and (subsetp Set1 Set2)
(subsetp Set2 Setl)))

(t nil)))

;***4, Function print-opi is a debugging function to print -the OPL
;-aaa of a cell to the screen.
(defun print-opl (X Y)

(cond ((equal *goal* (list X Y)))
(t (print (aref Ocella X Y 3))

(prinl (aref *ceil
(first (aret *cel* X Y 3))
(second (aref *cell* X Y 3))
2))

(print-opl (first (aref *cell* X Y 3))
(second (aref *cell* X Y 3))))))

aaaaaa*aaaaaaaaaaaa* A*AaaAAdaaaa*AA4*4aa *aaha*A.a*Aaaaa**Aaa*

;aaaaa Function "linefeed" is a tonemonic for trpri.
;*,4, ~Side Effects: causes a carriage return to be sent to
;**a a the output ntream.

(defun linefeed )
(terpri))

(defun linefeed2 (|
(terpri *output-stresma))

;*a**r Function "report-completion" sends a message to the screen
(defun report-completion I)

(linefeed)
(princ "Wavefront expansion complete") (linefeed)

(princ "Type (kill-windows) to remove screen")(linefeed) 't)

;A*** Function sozt-condition determines the order between
;aa**a two cells on the wavefrout.
;a,4, Arguments: two sets of coordinates
;,4aaa Returned: TRUE if remaining cost of first cell is less than

remaining cost of second.
.aa,,A Side Effects: none

(defun sort-condition (Cell Cell2)
(let ((Xl (first Ce1li))

(Yl (second Cell.))
(X2 (first Cell2))
(Y2 (second Cell2)))

(< (aref *ceLl* Xl YI 0)
(aret *cell * X2 Y2 0))))
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.'.Mode: LISP; Syntax: Conwnon-Lisp: Package: USER--

r' ile "graphics" contains the functions to open a window for
6AAdisplaying the terrain, wavefront, boundaries, and back-paths.

;A AAA It is adapted from file "graph.lisp" written by Dr. Se-Hung Kwak

'''Current as of 13 May 88

(defvar 'display-window')
(defvar 'draw-window')
(defvar Adraw-window-array*)
(defvar *draw-window-width*)
(defvar 'draw-window-height')
(defvar *draw-window-inside-width')
(dtfvar 'draw-window-inside-height')
(defvar 'draw-window-position4)

(defun initialize-graphics C
(initialize-windows)
(clear-window)
(draw-goal)
(draw-features 'terrain-pixel-list')
(make-visible))

(defun draw-and-show-window (
(mapcar 'draw-pt 'boundary-pixel-listA)
(mopcar 'draw-pt Obackpath-pixel-llst*)
(make-visible)
(setq 'backpath-pixel-list' nil))

(defun draw-and-show-bdry-window C
(clear-window)
(draw-goal)
(draw-features Oterrain-pixel-list*)
(mapcar 'draw-pt 'boundary-pixel-list')
(make-visible))

(defun draw-and-show-backpaths
(clear-window)
(draw-goal)
(draw-features (get-all-backpaths))
(make-visible)
' t)

(defun show-boundary C
(mapcar 'draw-pt *boundary-pixel-list')
(make-visible) 't)

(derun show-terrain C
(drow-featIure3 'terrain-pixel-list')
(make-visible) It)

(defun show-goal C
(draw-goal)

(defun ahow-hackpaths
(draw-features (get-all-backpatlu))
(make-visiblq) 't)

(riefuto initialize-windaoO(
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(princ "Initializing Windows") (linefeed) (linefeed)
(3etf *draw-.window-width* 650)
(setf *drew-window-height* 500)
(setf *draw-window-positionA I(75 75;)
(setf " display..window*

(tv:make-window 'tv:window
:blinker-p nil
:position *draw-window-position*
:width *draw-window-width*
:height *draw-window-height*
:name "display-window"

:expose-p t))
(setf *drmw-,window*

,tv:make_- 4lndow 'tv:window
:blinker-p nil
!position *draw-window-posit.on*
:width *dtaw-window-width*
:height :*draRi-window-height*
:name "draw-window"
:save-bits t
:expose-p nil,)-

(3etf *draw-window-array*
(send *draw-window* :bit-array))

(setf *draw-window-inside-height*
(send *draw-window* :inside-height)) -

(setf *draw-window-inside-widthft
(sen~d *draw-window* :inside-width)))

(de fun clear-window C
(tv:sheet-force-access (Odtaw-window*)

(send Adraw-window* :refresh)))

(deftun draw-goal (1
(tv:sheet-force-access (*draw-window*)

(send *dzaw-window* -:draw-string "*
(- (* *magnification* (first *goal*)) 3)
(+ (0 Omagnification' (second *goal*)) 5))))

zIde fun make-visibleoC
(send 'display-window' :bitblt

tv alu-seta
*draw-window- nside-widthO

*draw*-window-arrayO1

2 2 0 0))

idefuri kill-windows ()
(senad 4display-window' Aill)
(send 4dzaw-wiiidow* :kill)
(linefeed)-(princ "Windows Killed") (linefeed) (linefeed))

(defun draw-featurev (Pixel-list)
(do ((Rest-of-list Pixel-list (rest Ret-of-list)))

((null PRes-of-liat))
(draw-plt 1.fi;rst Rst-of-list))))

(de f %.r 'Jrnw-pt (point-coords I

(senid "draw-window4
.draw-point (first roint-ecordt;) (second point-ccoordjn)))
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APPENDIX D - IIIGlI-COST EXTERIOR-GOAL JICA

INTERIOR-BOUNDARY CONSTRUCTION SOURCE CODE

AFile "bdrygen".
A Updated 12 Jan 89.

AThis proorrm generates boundaries for JICA interiors
and writes them to two files; "bdry out" Is a file of prolog

' facts recording the boundary and terrain information;
A "bdry fig" is -the same info xtady for plotting by the "figure " utility.
Requi res "bomapdaWa, "boutils", "bgplotter", *ad "bdryjoi n"
A to be in the- same directory when started.

AUsage: from unix, type:
A prolog

(bdrygen).

bg :- assert(writeflagcwritt)), /A or (write-flag(no write)) Os/
initialize ba ,generate bdr ys,

tell (user) ,n1, write C'Boundary genernticn -done (First Vass)'),nl,ni,
reconault(bdryjoin),
bdry joiti.

bq2 g- enerate -bdrya,
tfel I (uner) ,write (I Iloutndnry venerationt clone -(Seconid rass) '),nt,
biiry-joi n.

generat-e bdry3

cosn((Xl,-Y,X2,Y21rtbistll,-tXl~Ylj,RList2)-,
iniitial output (tXg, Yaj ,RList2,_),
clansify tdges (IPlist2, lXg, YgJ,Rl)Iist23),
convert v Iist to elist(l,RIitA3,R11it4),
avsert (region elist (PList4)),
generate IrbounaarieaO(RList4,-(Xg,Ygj),
order -initbdry-idicev, I

A Temporariiy, filn "bgmaipdata" must have a predicate for each
A vertex with its optimal path list. Eventually,- this should be
A replaced by a call to a prath- Eindirng program such as ".qal" or "rrr"

PCoipare lvi. edgec w/ 2'J,3d.., recurse to comp 2d edge is/ 3d-,4t%. .,etc*/
generatezilreO(, ,VI2j z,2,YjX.g).
generate bounidariesU((X,Yl,V2,12,-X2,Y21p.est, Pg,YaJ)

;eneratehbu2itlr(X,Yl-,VI2,J12,X2,211etilixulygj),
yesic rnte bot:ida ri er (ReaL , tyg, Y9 I )
/I Stopping cndition: only one' edge left A

generate boundaes,,,-,~, -I

SIf verte,. ]Jot froim f-Ile '%gIma,.lnt&" already i11WuJ" 1ef
Pfit poimnt a t Ii" lAnf, It will appear twice, ir) ig.n-re
/* i th necalirI eueI(.#



/* Type 1 '
generate_boundaries((Xa,Ya,v,tlab,Xb,Yb,Xc,Yc,v,Hcd,Xd,YdIRest, (Xg,Ygj)

interior cost (Ci),exterior-cosk (Ce), /* 2vis (Typel) bdry 4

plot_2vi; bdry (Ci,Ce,Xa,Ya,tlab,Xb, Yb,Xc,Yc,Ncd,Xd,Yd), /Pplot Edgel,924/

genierate b;oundaries((Xa,Ya,v,Nab,Xb,YbIRestj, (Xg,YgI). /*[Vl,V3IRestj*/

/* Type 2 */P

generate boundaries(IXa,Ya,v,Nab,Xb,Ybt,Xc,YC,h(F),NCd,Xd,YdIResti, (Xg,YgJ)
'interior-cost(Ci),exterior-cost(Ce), / Ivi3 (Type 2) 1

plot ivis-bdry(r,Ci,Ce,Xa,Ya,flabXbYb,Xc,Yc,Ncd,Xd,Yd), /'plot V1,124/

gen~erate boundaries((Xa,Ya,v,Nab,Cb,YbIRestJ, (Xg,Ygj). /A(Fl,r3jRestJI%/

P4 Types 3 and 4 */

generate boundaries C(Xa, Ya, h(F) ,tcb,Xb,Yb, Xc,Yc,h (G) ,Ncd,Xd,YdtRestI Xg,Yg)
Tinterior-cost (Ci),exterior cost (Ce), I' Ovis (Type 3 or 4) 61

plot -Ovis bd~ry(r,G,Ci,Ce,Xa,Ya,tlab,Xb,Yb,Xc,Yc,Ncd,Xd,Yd), /*plot E1,2*/

generate b;ounidarie3((xa,Ya,hi(),145b,Xb,YbtRestI, (Xg,Ygj). /*IEl,E3IRJ*/

initialize -h :
consult (baiiapdata),
consult (bgutils),
consult (boplotter),
tel(user), ni,nI, ni,
write ('Bou3ndaries being computed:') ,nl,!.

i nit ial-output (f Xg,Y9gI , Region, Region elis3t)

assert: (title C'')),

title (Title),
write to bdry file (titie,Title),
write to bdzy_filefgoal,(Xg,Yg)),
writeito bdry_file (region, Region),
/P write-tobdyfile(regionelit,Region..li~t),
wrice_to-fiq_file(title),
write-to-fig_file(goal,IXg,YgI),
write heading (region),
write to fig file (region, Region), ~

/0 convert list of verticea (vertices are not repeated) to a list

Iof edges (a vertcx appeer3 once for each edge)
*Also number the edges sequentially, and assvert the number of edges.

conivert vlist-to-elist (Si,[X1,Yl,Vl,X2,Y2), (Xl,Yl,Vl,tz,X2,Y21)
assert (number of edges (11)).

convert -vlist-to-elist (21, I,Yl,o,X2,Y2IRListRestJ,
(Xl, Yl,o,o, X2, Y2IRevf(Li stRestJ)):
convert vlist to elist (21, X2,Y21RListRestJ,RevRbistRest), !

convert vliset to elist (21, IXI,Yl,Vl,X2,Y2IRListRestI,
(XI,YI,Vl,21,X2,Y21IevRListRestII
11plu.9l is 11 4 1,
convertvist-to-elist (lirlusl, (X2, Y2IRListRestI , RvRistRest), 1.

classify eages (Li, fXq,YgI,L6)
edge visihility chieck (21,,(Xg,YgJ , 2),
rntate edovll t (12, 0.),
mark edger (1.3,L14),
insert-opposite -pt (14,1,5),

Prirrt step past via edges, leaving their markings unchanged '
xefsark-edges((Xl,Yl,v,X2,Y2lItestJ,IXl,Yl,v,X2,Y

2 IRest 2j)
remark -edacsUX2,Y2IRestJ, (X2,Y2IPest2j).

P W'w ste rin h(h) edges. I/
remark edges((il,Yl,hs(b),X2,Y21P.estI, (X.,Yl,hi(b),X2,Y2IRest2J)
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remark edges((X2,YZIRestI X2,Y2IRest2I).
P* At each h(oU) edge, change lob' to 'b' '
remark edges UXl,Y1,h(ob),X2, Y2IRestJ, (Xl,Yl,h(b),X2,Y2IRest2J)

remarkedges((X2,YZIRestJ, (X2,X2IRest2I).
P* At each h(oa) edge, change foa' to 'a' *
remark edges((Xl,Yl,h(oa),X2,Y2IRestj, IXl,Yl,h(a),X2,Y2IRest2j)

remark edges((X2,Y2IRestJ-, X2,Y2!Rest2J).
/* At first h(;) edge, stop. */
remark -edges(fXl,Yl,ht(a),X2,Y2I~estj, (Xl,Yl,h(a),X2,Y2IRestJ).
/* If no h(3) edgev, stop. ~
remark edges ((X, YjJX, Yj).

insert opposite pt(L4,L5) P* on first pass, assume no shortcutting '
not(first paso done), P* occurs and set up opposite point A

insert -tentativ;eopppt(L4,1,5), P* and optimal paths accordingly. *
assert-pseudo-ops(L5), 1.

insert opposite pt(L.4,L5) I'on second pass, use correct opp point '
first pass done,
insert-correct opp pt(L4,LS), !

POn rIRST PASS, insert tentative opposite point at the midpoint of A

P* the opposite edges, disregarding any possible shortcutting. A

/I Change marking on other 'o' edges accordingly. *
P* First step past via edges, leaving their markings unchanged A

insert tentative app pt(lXl,Yl,v,X2,Y21IectJ, fXl,Yl,v,X2,Y2Iftest2i)
insert -tentative-opp-pt((x2,Y2IRestI, (X2,Y2IRest2JI.

P* Now step past h(b) edges. I/
insert-tentative opp pt(Xl,Yl,h(b),X2,Y2tRestj, (Xl,Yl,h(b),X2,Y2IRest2J)

insert -tentative -aoppt(1X2,Y2IRestJ, (X2,Y2IRest2J_).
11 At first h(o) edge, branch to insert. .2, passing opp edge info along. *
insert tentative opp-pt (,Xl,Yl, h (o),X2, Y2i'RestJ ,RevisedL)

optimal pat~h((Xl,YIllji,cccw),
insert -tenttiveOpppt2 ( Xl,Yl,h (o),X2,Y2IRestJ, !Xl-,YlJ ,Cccw,RevisedL).

P* If there is no h(a) edge, go to insert. .3, then stop at last h(o) edge A
P* opposite point In previous lo' edges. */
insert tenita tive oip pt2 ( XI.YI, h(o), X2, Y2J ,OE,Cccv, R2)

insert tenitative opp pt3 (X2,Y2, [X2, Y2, h(o) IQEI,Cccv,R2).
I' At each hiol) edge, pass app edge info along. R/

insezt-tentative-opppt2(XI,Yl,h(o),X2,Y2RJ,OE,Ccc,R2)
insert tentative orppt2(1X2, Y2IRj, (X2,Y2,h(o) IOEI,Cccw,R2).

PAt first h(a) edge, insert 1st-guess opposite pt in previous 'a' edges./
inseLt tentativeopp tZ(X1Ylh ,X2,Y2P.J,OE,Cccw,OandAList)

optimal path(IJulf., Yl OPcv , Ccv),
reverse edge lisL (OE,OPERev),
edoe length (OCRev, Length),
0 is (Lengthl~cw-Cccw)/2, /I app pt is D along the- Q~s ccw from ptl1
ins~tt enitoIpptalonaedges (OEftev, D,OERevised),
coniOE7-Revised,tih(a),X2,Y2IRI,OandAList).

/0 If there are no h(a) edges, insert 1st-guess app pt in previous 'a' edges. '
insert tenta tive opp pt3 (Xl,Yl,oE,Cccw,OandAiist)

optimal path(IXI,Yl IOPcw),Ccw),
reverse edge list (OE,OERev),
edqe length (0ERev, Lenqth),
D ia (LengthlCcw-Cccw)/2, P* opp pt is D along the oEs ccw from ptl '
insert tent app pt alonig edges (OERev,D.OandAList).

insert tent app pt alonig edges(Il,Yl,hito),X2,Y21OEI,b, X1,-Yl,h(ob) ICERevj)
distance(Xl,YI,X2,Y2,0l), V2 is D - Dl,
D2 > 0,
iiisert tenit app pt along _edges( (JX2, Y2 JOE)I, C2,OEP.ev)

h 10,X,72JED

(XI,Yl,ht(obb)Xopp,Yopr,htoa) IOEP.evj) :
distance(X1,Yl,X2,1z2,Dl), D2 is D - M2,
D2 -< 0,
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DeIX is X2 - Xl, DeIY is Y2 - Y1,
Xopp is XI + DelXAjD/l1), Yopp is Yl + DelY*(D/DX),
assert (opposite point (Xopp, Xoppl),
changeot oa ( (X2, YZ IQOEI,OERev).

changeo_to-oa((X,Yj,IX,YJ):-!
change o _to oa(IX1,Yl,h(a),X2,Y2OCI,(Xl,Yl,I(at),X2,Y2O!I))I
chiaageotoo(X,YI,(o),X2,Y2I1e, ,Xl,Yl,Ii(oa),X2,Y2IoVnevI)

chaige-otooa([X2,210E1, (Xi,Y2IOERevI), 1.

/6 At each vertez along tentative opposite-edge seque~nce, assert a '
/4 pseudo-optimal-path as if no shortcutting occurred *
/* First step past visible edges */
assert pseudo -ops((Xl,YI,v,X2,Y2jRestJ)

assert -pseudo -op((X2,2F~estJ).
/* Nlow step past 'before' edges *I
assert_pseudo ops((Xl,Y2,h(b),X2,Y2IRestJ)

assert pseudo op ( (X2,Y211'estj).
/0 At first 'opposite' edge 1/
assert pseudo ops((Xl,Yl,h(ob),Xc2,Y2IRestJ)

optimal _path ((Xl,XlIOPlI),
assert (pseudo optimal _path ((Xl,YXlIOPi I)),
exterior cost (Ce),
assert (pseudo -optimal path ( X2,Y2Z,c(Ce) ,Xl,Yl lOPII)),
assert pseudo -ops2 ( X2, !2 IRest ).

/* At subsequent 'opposite' edges */
assert pseudo -ops2(C[Xl,Yl,bh(ob) ,X2,Y2IRestI)

not (opposite point (Xl, Xl)),
pseudo -optimal path ((XX,YLIOPlj),
exterior cost (Ce),
assert(pseudo-optimal path((X2,Y2,,-(Ce),Xl,Yl-IOPlI)),
assert pseudo -ops2-((X2,Y2jRestJ))

P0 At edge with 'opposite point' */
aspert pseudo ops2(Il,Y3,h(oa),X2,Y2jRestI)

opposite point (Xl,Yl),
assert-pseudo ops3 (jX2,Y2IRestJ)-,
pseudo optimal path ( X2, Y2 l0P2 ),
exterior cost (Ce),
aesert (pseudo optimial path ( l, YI,c (Ce) ,X2, Y2IOP2J)),.

P0 If there are no ''edge s, assert clockwise OP at vertex and stop. *
assert pseudo ops3 ( XI,.YlJ) :

optimal path( Il,YlIOPlJ),
assert pedoOtma-ah 1,IIPI).

/I Search to end of 'o' edges, asserting clockwise OP at each cw veztex ~
assert pseudo ops3C(Xl,Yl,h(oa),X2,Y2IRestJ)

assert pseudo-ops3((X2,Y2IRestj),
pseudo optimal path ((X2, Y2 0P2 I),
exterior cost (Ce),
assert(pseudo optimal path((Xl,Yl,c(Ce),X2,Y2IOP2]fl.

PAt first 'after' edge assert a cw ps-op and stop. '
assert pseudo opsl'(Xl,Ylvh(a1,X2,Y2IRestJ)

optimal path ( Xl,Yl OPi 3),
assert (pseudo optimal-path ((Xl,YXl OPI)).

/0 On SECOND PASS, Insert correct opposite point into the
P* the opposite edges, disregarding any possible shortcutting. 0/

/, Frsrt step pavt via edges, leaving their markings onchanged '
insert co-rrect ppp pt([Xl,Yl,v,X2,Y2I~tetJ, (Xl,Yl,v,X2,Y2lRest2J)

in'iert correctopp-pt (1X2,Y21P~estJ, X2,Y2IRest2J).
/* host step pnst h(b) edoea. .1
itiaert-correctoppptXl,Yl,(b,X2,Y2ltcsLJ, (Yl,Yl,h(lJ,X2,Y2IRest2))
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inser~t correct opp-ptC(X2,YZIRet-, (X2,Y2tRest2j).
P At each h(oT edge, see if opp pt is on this edge.
/* If so, revise rest of h(o) edgeA and insert opp pt.
insert correc topp-pt((X,Yl,hi(o) ,X2,Y2IRestI,

(Xl,Yl,h(ob),Xopp,Yopp,h(oa),X2,2ftest2j)
opposite point (Xopp, Yopp),
on_line CXopp,Yopp,X1,Y1,,C2,Y2),
change o to oa(1X2,Y~tRestI,!X2,Y2IRest2J), 1.

P~ If not, mark edge h(ob) and look at rest of h(o) edges. ~
insert correct -opp pt([Xl,Yl,h(o),X2,Y2IRestI, IY.l,h(ob),X2,Y2tRest2I)

insert_ correct opp pt(tX2, Y2tRestl, (X2,Y2IReat2I).

P0 Step thru edge-list, rotating it until all visible edges are on its ~
P* front, and all hidden edges are on its end.
/* Upon finding a hidden edge before any vis edge, put it on the end, ~
1* and start again looking for vis or hidden edges.
rotate-edge_list((Xl,Yl,h,X2,Y2IRestJ,RevisedList)

con3([X2,Y2IRestl, (h,X2,Y2J,L2),
rotate edge list(L2,RevisedList), !

P Upon finding first vis edge, step thru the list keeping vis edges in A

/* order, and then keeping hidden edges in order. If any vis edges are
/I on the end of the list, put them on the front. '
P and if so, put them on the front, maintaining order. 4

rotate-edve_list(tx,Y,vlRestj,FullRevisedList) 1

rotate_edge _list2 ((X, r,vRestJ , RevisedList, FrontofLiet),
cons (FrontofList, RevisedList, FullRevisedbist), 1.

P* Go past the front-end visible edges. */
rotate edge list2((Xl,Yl, v,X2, Y2IRestj, (Xl,Yl,vjL2J,FrontofList)

rotate -edge list2 ((X2, Y2IRestJ ,L2,FrontofList), 1.
P Go past the first hidden edge after the visible edges./
rotate edge list2([XI,Yl,h,X2,Y2jReasLJ, Xl,Yl,hsIL2I,Frrontofbiat)

rotate -edge_list3((X2,Y2tReatI,L2,FrontofList), 1.
/* Go past the rest of the hidden edges after the visible edges. 4

rotate edge list3C!XI,Yl,h,X2,Y2IRestJ, !Xl,Yl,hIL2J,Frontofbist)
rotate edge list3([X2,Y2IResLJ,L2,Fronitofit), 1.

I' If visible edges are found past thz hidden edges, the rest will also '
/* be visible; send the rest back up to be put on the front of the list 4

rotate-edqe_list3((X,Y,vltestJ, X,YJ,FrontofList) :
all -but last coords(IX,Y,vtRestJ,Frontofbist), I

P Ending condition. */
rotate-edge_list3((X,YI,(X,Yj,IJ) :

P eliminate the last coordinates and the last edge-vi3 flag 4

all -but -last -coords((X,Yj,jj)
all but last coords((X,Y,VIRestJ, IX,Y,VIInevisedRestJ)

-all-but-last-coords(Rest,RevisedRest).

/4mark edges before (b), after (a), or opp~osite (o), based on whether 4

/0 they are before or after the opposite edge, or undetermined.
mark edges(LI,L3)

mark edqes2 (Li, 1,2), mark edges3 (L2,L13), assext opposite edye (L).
P 'mark edgqs2' marks 'h(b)' or 'h(a)' based on opt paths of edge itself. '
/I Base case for 'mark edgeo2' . I/
mark edges2 (_,_j, (,J).
/0 First step past via edges, leaving their markings unchanged 4

- mark edges2((Xl,Yl,v,X2,2P.eatj, IXl,Yl,v,X2,Y2IRest2j)
Ru*2(~,Y~ L , i XZ, 72 i RCUZ '

/I Upon finding a hidden edge, check if It is 'b' or 'a' or lo' ./
/0 It is 'b' if opt path from X2,Y2 starts toward XI,Yl.
mnark edges2U(Xl,YI,h,X2,Y2lRestj, (Xi,Yl,hi(b),X2,Y2IRest2Jl

optimal pathi((X2,Y2,c(C) ,Xi,Yii I)),
onray(Xi,Yi,X2,Y2,Xl,YI),
mark edges2(!X2,Y2~estJ, (X2,Y2Igest2.))

PIt is 'a' if opt path frrnm Xl,Yl starts toward X2,Y2.
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mark edges2((XI,YJ,li,X2,Y2IRestj, [X1,Y1,ls(j),X2,Y2IRest2J)
optimal path([X1,Yl,c(CI ,Xi,YiI J),
on-ray(Xi,Yi,Xi,Y1,X2,Y2),
m~ark edges2(1X2,Y2IRestJ, (X2,Y2IV~est2i1).

/4 Otherwise it is potentially an opposite edge, so mark it with lot 0/
mnark edges2((Xl,YI,ht,X2,Y2IRestj, (Xl,Yl,h(o),X2,Y2IRest2J)

mark edgro2(1X2,Y2IRostJ, 1X2,Y2IRest2J)-

/4 mark edges3 marks 'b' or 'a' based on previous marking of adjacent edges. 4

/* rirst step past vis edges, leaving their markings unchanged 4

mark edges3(IXlX1,v,X2,Y2IReat1, IX1,Y1,vX2,Y2IRest2J)
mark edge33((X2,Y2IRestj, (X2,Y2IRest2j).

/* Now deal with- hidden edges. */
mark edges3((xlI,Yl,4L,X2, Y2IRestJ, (t1,Yl,H2,x2,Y2IRest2J)

mark -edges4((XI,Yl,H2,x2,YZIRestI, rXl,Yl,I!2,X2,Y2IRest2J).
/P Base case #I. End of list. '
mark -edges4((X, YJ, (XY1)
/4 Base case 02. Unknown, or as previously marked. 4

mark -edges4((Xl,Yl,fi,X2,Y2), fXl,Yl,II,X2,Y2J))
/4 Base case U3. It is 'b' if next edge im already 'b'. 4

mark edges4((X1.Y,(o),X2,Y2,i(b),X3,Y3),(X,Y,h(b),X2,Y2..h(b),X3,Y3J).
/4 Base case #4. It is 'a' if previous edge is olready 'a'. 4

mark edges4 (LXI,Yl,h (a) ,X2,Y2, h (o) ,X3,Y31, Xl,Yl, h(a) ,X2,y2, h(a) ,X3,-131).
P Ba&se case-15. It is still potentially an opp edge, as previouslymarked. 4
mark edges4((Xl,Y1,HO,X2,Y2,41,X3,Y3J, IXI,Yl,HO,X2,Y2,Hl,X3,Y3)).
1* It is 'b' if next edge is already 'b'. 4

mark-edges4C[Xkl,Yl,,h(o),X2,Y2,h(b),x3,3Pet,
(X1,Yl,h(b),X2,Y2,h(b),X3,Y3tRest2I)):
snark-edges4(JX2,Y2,iz(b),X3,Y3lRestj,-(x2,Y2,h(b),X3,Y3IReat2).

/0 It is 'a' if previous edge is already 'a'. 4

mark edgesi C IXl,Y1,h (a) ,X2, Y2, h(o), X3, Y3 Restj,
rX1,Yzl,ha),X2,',ha),X3,Y3IRestzJ,:-
mnark edges4((x2,Y2,-h(a),X3,Y3IaestJ, 1X2,Y2,h(a),X3,Y3tRest2J).

/Otherwise it may be an opposite edge, so leave It as previously marked. 4

mark edges4((X1,Yl,I4O,X2,Y2,Hl,X3,Y3lRest), Ii,Yl,HO,X2,X2,H2,X3,Y3I~test2j)
mark -edges4((X2,Y2,Hl,X3,Y3lRestj, (X2,Y2,H2,X(3,Y31P,est2)).

/4 First step past vis edges */
assert opposite edge(lXl,Yl,v,X2,Y2l~estl)

as3ert -opposite edge ((X2, Y2 IRest)).
/* Second atep past h(b) edges */
assert opposite edge(iXl,YI,hib) ,X2,Y2tRestJ)

assert- oppos1te-edge ((X2,Y2JRes-.J).
P4 At first opposite edge, get rest of opp edge and then assert in~o 4

assert -opposite edge((X1,Y,Ii(o),X2,Y2IRestj) :
a6Sett -Opposite -edge2 C j32, U Rest , Rest2),
*;set(oppcsite-edgeclx1,Yl,h(o) IRest2J)), 1.

/0 At first h(a) edge, or at end of list, sLop./
assert opposite edge2 ((X, YJ, X, YJ).
assert opposite -edge21[Il,Yl,b(a),X2,Y2lRestj, (Xl,Ylj).
P4 At each h(o) edge, get rest and send back opp edge verhices 4
assert opposite edge2((X1,YI,Ia(o),X2,Y21lnestj, Il,Y1,h(o) IRest2J)

assert op~rosite-edge2(!X2,V2IRest3,Rest2), !.

/0 Succeeds if 1st pt is on a ray from 2nd pt to 3rd pt between the two pts, '
P&fails o1w. sucetedl 5f r 1t .-t - 3rd--~ -Pt fzil -if 1 -

on ray (X2, Y2, X1, V., X2, Y2).

strict] y hetwcn (Xi,xl, X2),
stri ctly between (Yi, YI, Y2)-,
Yx is X1 (Y2-Yl)/(X2-XII -I Y2 -X2 (Y2-YI)/-(X2-X1),
wit hill-tolera once (Xi, Yx, Xi, ii)
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PA Binds UL to the list of opposite edges. A

-get o-edges([_,,h(v) IRjUL) o-edges (R,ULI.
get o edges(I_,_, fR],UL) o edges(R,UL).
get-o-edoes(tXl,Yl,h(o),X2,Y2IRI,f(Xl,Yl,X2,Y2IRestULI)

get o edges ((X2, Y2jIRJ, RcstUL).
get -o edges((_, _,h(a)IRI, (j) :-get o-edges(R, I)),
get oedges(_,_J, j)

order-initbdry indices

sort ((Z.jj-, f12,321),
asberta (initbdry (II, ), B) ),
fall, 1.

order isiitbdry indicez
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ia aaaaAaaaaaaAA Aba aaA*aa*iA*A~a**A*****A**A****A*&A *A AAAhAAA

a

* File "bgplotter" has the predicates which plot
A boundaries of various types. It is loaded by "bg".

* This predic. plots 2vis/ (Type 1) bound.ries between two tCA edges, ie,
A between two visible edges

a Updated 12 Jan 89.

SCi :interior (high) cost
* Ce : exterior (low) cost pt C
* Alpha included angle of
a region vertex
• Beta angle between first High-Cost Area
a edge (pt V to pt A) and Interior, cost - Ci
a a line between the
a vertex and the goal.
a Gamma angle between seuond

edge (pt V to pt C) and
a line between the
vertex and the goal. \Alpha

D: distance from goal to vertex. Ganmma \
a RotAngle : angle needed to rotate pt V pt A

the .x-axis counterclockwise / Beta
a to bring it parallel with
a the first edge- (V to A) / Exterior,
a XaYa : coozds of first point. . cost - Ce
* Xv,Yv : coords of second point, /

the vertex, connected- to pt A +
* Xc,Yc : coords of third pcint. Goal
* Xv2,Yv2 : if' the edges-are not

conected, these axe -the Here the rotation angle - 0.
coords of the "inner" vertex
of the second edge, of which
p.t C ia tho other vertex.

aI

plot_2vlsbdry (Ci, Ce, Xn, Ya, lab, Xb, Yb, Xc, Yc, lNod, Xd, Yd) -

virtual vertex(Xa,Ya,Xb,Yb,Xc,Yc,Xd, d,XvvYvvt,
plot_2vie3bdry al Icases (C , CC, lab, lcd, Xs, Ya, Xvv, Yvv, Xd, Yd), 1.

plot.2via bdry allcasesfCi,Ce, Ni, 2, Xa, Ya, .v,Yv,%c, Yc) :-
initialize for bi, /* Th . is a 2v/ or I/
goalpoint(Xg,Yg), /A Type 1 boundary. */
p1 (Pi),
distance (Xv, Yv, Xg, Yg,DI),
distance (Xv, YXc, Yc, D2),
distance (Xa,Ya, Xv,Yv, D3),
distance (Xa,Ya, Xc, Yc, D4),

not(Dl-O),not-(D2-O) ,not(D3-0)-, /if any of these fail,'/
notfD4-0)-,notD05-0), / -> programming error or map error
Coal Es (DZ^24D.^2-D4^2)/(2'D211D3},

a rcco. (CosI, A] pho),
Cos2 is (0lA2A4[3^2-DS^2)/(2*DlaD3).
a rccoo (Co92, Beta),
Gnnma is 21'i - Alpha -Vet,
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ThetaCrit is asin(Ce/ci),
tell(user), write('2via (Type 1) bdry being plotted between edges'1
write(ill),write(' and '),write(N2),nl,
check inlput for typel (Alpha, Beta, Ganma, ThetaCrit,Dl),
compute_angle of rotation (Xv, Yv, Xa, e, RotAngle),
assert (bdry ((Xv, Yvj)),
calc-bdrytypel (Alpha, Ieta,Ganva,ThetaCrit,Dl,Xa,YaXv, YvXcYc),
rotate bdry (RotAngle),
bdry (Odry),
reverse-Patth -list (Bdry,RevBdry),
truncate -off -map (RrvBdry, Finalfidry),
assert (initbdry ((Nl, H23, FinalBdry)),
/4 tell(bdry out), write(' Type 1 '),nl,
write-to-bdry-file(bdry,Bdry,Nl,N2),nl,
output to figure file, A

i.
plot _2 vis-bdry_.allcases(_,_, _,_,,-,,-)

initialize for bi
ai'olish (done, 01 ,
abolish (bdry, 11,
abolish (thetal, 1), !

calc-bdrytypel.(A, B, G,Tc, Dl,Xa, e, Xv,Xv, Xc, Xc)-
pi (Pi),
get.T_TIrange (G, Xv, Xv, Xc, Xc, Timin, Timax),
prec;ision (Precision),
DelTI is (Timax-Timin) / (recision/2),
Tlinit is Tlatin - DelTl/2, /* let let point be closer to vertex *
asoert (thetal (Tlinit)),
xetract (thetal (7lprev)),
Ti is Tlprev + DelTl,
T1 < Tlmax40.0l,
Ti < PI/2,
assert (thetal (TI)),
caic -bdrylpt(D,T,A,B,G,Tc,T3,T4,YXlX

2 ),store_2vin-results K(-T3, -T4, Xl, 2,B, Dl, Xv, Xv),
done, I

calc-bdry-pt (DI,'rI ,A, B,G, Tc,
T3,T4,YI,Y2)

abolish (donel, 0),
abolish (thet-a3, I),
abolish (increment, 1),
piUPA),
Initlncr is -(Pi-BI/2, 1'1/2 of range of Theta3 '
assert (increment (Initlncr)),
T31nIt is B-(Pi/2),
assert (theta3 (T3iinit)),
retract (theta3 (T3)),
calc-Epsilon(Dl,TI,A,,G,Tc,T3,T4,X1X2),
get direction (&,Direction),
get T3)ew (Direction,T3, T3new, Incr),
assert (theta3 (T~new)),
donel, !.

vitua v ert(Y.!Y ijY2,2,X,, v,; - /2' Lim virtual vextex is I/line-intersection (Xl, XiXZt, X3,X3, X4,X4, Xv,Xv), I. /* the point of ~
Iintersection of the lines./

ge. 'TI range (',, X,Yv, Xe-, Yv,Tlinit, Tlfinnl)
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Tinit is G-Pi/2,
goal point (Xg, yg),
distance (Xg, yg, XV,Yv, Dl),
distance (Xc,-YC,Xv,Yv,D2),
distance (Xg, yg, Xc,Yc, D3),
Cos is (V2 ^2+D3A2-Dl 2,/ (2*D2*D3),
arccoq (Cos IAnSgj) ,
get Tifinal (A:'gle, TIfinal), 1.

get_Tlfinal(Angle,T~final)

Angle > 0.05,
pi (pi),
Tifinal i.i P1/2 - Angle, 1.get-Tlfinal (Angle, TIfinal) /* Make Thetal a little larger 4Angle -< 0.05,
pi(pSj,
TIfinal is ((Pi/2 -Anlgle)+(Pi/23)/2, 1.

get direction (E,minut)
E > 0.001,!.

get direction (t,plus)

get_.direct ion (g,done)
assert(donetj, 1.

getj3new(done,, , _3:
getT3new (plus, T3, Tlnew, incr)-

I ncrtment (Incr) ,
!nor < 0, 

/1 I direction oC search 4T3new is T3-Incr, P, has changed, halve the 4Jalflncr is -incr/2, /P incr & change signs, 4retractfjncrement( 1), /A othenwise don't. 4ossext (increment (Halfxncr)), Iget T3new~(plus, ?3,T3new1, ner)
zetract (increment (lncr)),
T3net, is T3+lncr,
assert (ncrement (Incr)), 1.

g~-~e~i u,3Tnwinicr) :
increment (Iflcr), - /4 If directiont of search ~Incr > 0, /* has changed, -halve the 4T3nev is T3-~incz, /* incr 4 change signs, AfalfIncr is -Incr/2, /* Otherwiae don't.zetract (increment( )_i,
assert (increment (llalf Incr)),* -

ge!t T3new(minus,T3,T3niew ,utcr) :
retract jncrement (Zncr)),
T3ne" is T341r-cr,
assert (increment (Incr) I, 1.

calc.epsilon(Dl,T,A,B,,TC,T3T4,Yl.A
2 ,E)T2 is asin(3in(Tc)*sin(TI)),

T4 is &sin (3ito(Tc) Osin W),,
S)inTC ie sin(Tc),
X1 is Disi1n(G)/co3(T1),
Y1 i-0 D16s~n()/cs(r3),
Al is D1'1sif(A)/cOs(T2),
A2 is D.1 .in (A) /Cos(T4),

81 is COs(TI.-G)/cO9(Tl),

92 in coo (T24 A) /cos(77g)_,
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Rhs is SinTc*Yl 4 Y2,
E is Lhs-Rhs, I. /P E > 0 if Cost(X-path) > Cogt(Y-path) *1

check inputfor typel (A,B,G,Tc,Dl)
pi(Pi),
A > 0, A < Pi,
B > Pi-A, B < Pi,
G > Pi-A, G < ri,
Tc > 0,
Tc < Pi/2,
D1 > 0, !.

check input_for typel (Alpha, Beta,Gamma,Thetacrit,Dl)
convert rads to degr (Alpha, AlphaDeg),
convert rads to degr (Beta, BetaDeg),
convert_rads_to degr (Gamma, GammaDeg),
nonvert rads todegr (Thetacrit, ThetacritDeg),
tell (user),
write(' ERROR in type 1 input: A-'),
write (AiphalDeg),
write(' B-'),
write (BetaDeg),
write(' G-'),
write (GammaDeg),
write (' D1- " ),

write (ThetacritDeg),
write (DI), nl,
fail, !.

* This predic. draws lvis (Type 2) boundaries, ie, boundaries between

* one visible a.i one hidden 1ICA edge.
*

' Updated 31 Jan 89

"plot ivia bdry" draws a boundary for edge I visible and edge 2 hidden;

" "plotbdry2inv" draws a boundary for edge 2 visible and edge 1 hidden;

* pt D

t Ci : interior (high) cost /
* Ce : exterior (low) cost / High-Cost Area
0 Alpha : included angle between pt P1 / Interior, cost - Ci

the two edges. /:
* Beta angle between first /
# edge (pt V to pt A) and / : Alpha
* a line between the pt C \
# vertex and the goal. \:Gamma
* X1 : distance from goal to vertex.
* Angle : angle needed to rotatz pt B \ pt A

the x-axis counterclockwise . Beta
0 to bring it parallel weth
# the first edge (V to A) Exterior,
* Xv,Yv : cootclIs O seco:nd point, cost - Ce
0 the vertex. +
* Goal

flece the rotation angle - 0

plotIvisbdry(o,Ci,Ce,Xa,Ya,lb,XbTb,Xc,Yc,Icd,Xd,Yd) :- /* Opposite edge. 4/

not (oppositepoint (Xc, Yc¢ ,
poeudo-optimal_path(Xc,Y'clOPc}), /* lst-pase, no shortcutting 4/

counterclockwise(mxc,YcrOrcj), /P If before opposite point.*/
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tell (user),
write('lv/b (Type 2) bdry being plotted between edges '),
write (flab), writeV 'Aknd O),write (Hcd) gnl
goal point (Xg,Yg), /* lv/- (Type 2) bdry A

translate line (xbYb, Xc, YcXd, Yd,Xdtr,Ydtr),

path_length((Xc,YcIOPcI,Dl),
distance (xb, Yb, xc, Yc, D~celc),
add_epsilon-if zero(D2calc,D

2),

distance (Xb, Yb, Xg, Yg, 03),
distance (Xc, Yc, Xd, Yd, Dcd),
distance (Xa, Ya, Xb, Yb, Dab),
distance (xa,Taxg, Yg, fag),
distance(Xa,Ya,Xdtr,Ydtr,Dadtr),
distance (Xa, Ya, Xc, Yc, Dca),
Coal is (Ocd^2+DabA2-Dadtr^2) /(2ADcdAVab),
arccos (Cosl, AlphsAfbs),
sign of -Alpha (AlphaAbs, Xa, TaXb, Yb, Xc, Yc, Xd, Yd, Alpha),
Cos2 is (D3-24Dab'-2-Vaq^2) /(2*D34Vab),
arccos (Cos2,1Beta),
Cos3 is (DZ2'Dab^2-DCaA2) /(2*D2*Dab),
arccos (Cos3, Gafma) ,
compute.angle-of-rotation (Xd, Yd, Xc, Yc, RotA),
connected (Xa, Ya, Xb, Yb, Xc, Yc, Xd, Yd, Conn),
plot_1v4 .s bdry2 (before, Conn, Ci, Ce, Mab, Ncd,

-Alpha, Beta, Gana, Dl, 02,3,
Dag.Dab,Xc,Yc,RotA), I

plot~ivis_bdry(oCi,Ce,Xa,Ya,Hab,Xb,Yb,Xc,c,4cd,Xd,Yd) 1.0 opposite edge '
pseudo -optimal pathU~Xd, YdIOPdI), /* Must be after opp pt ~
tell (user),,
write('iv/a (Type 2) bdry being plotted between edges 1),
write(tHab),write(' and '),write(Hcd),nl,
goal point(Xg,Yg), .~ 1hv/- (Type 2) bdry ~
translate line (Xa, Ya, Xd, Td, Xc, Yc, Xctr, Tctr),
path length((Xd, YdtOFdjDl),
distance (Xa, Ya, Xd, Yd, O2calc),
add -epsilon-if zero(D2calc,D2),
distance (Xa, Ya, XgYg, 3),
distance()hc,Yc,Xd,Yd,Dcd),
distance (Xa,-Ya, Xb, Yb, Dab),
distance (Xb, Yb, Xg, Yg, Dbg),
distance (Xb, Yb, Xctr, Yct r,Dbctr),
distance (Xb,Yb,Xd,Yd,Ddb),
Coal is (Dd2pa -ic 2/ (2ADcdhDab),
arccos (Cosl,AlphaAbs),
sign of -Alphia (AphoAbs,Xb, Yb, Xa, Ya, Xd, Yd, Xc, tc, Mph.),,
Cos2 is (D3^-24Dab2-Dbg^2)/ (2'D3"Dab),
arccos (Cos2, Beta),
Cos3 is (D2^24DVb2-Ddb^.) / (2AD2*Dab),
arccos (Cos3,Gamn-3J,
computangleof-rntatioti (Xd, Yd, Xc, Yc, RotA),
coninected (Xa, Ya, Xb, Yb, Xc, Yc, Xd, Yd, Congai),
plot lvis bdry2 (after, Conn, Ci, Ce,.tNab, tlcd, Alpha, Beta, Gaginia,

Dl,D2,D3,DbqDab,Xd,Yd, RotA), I.

plot lvis bdry(btCi,Ce,Xa,Ya,Nb,Xb,Yb,Xc,Yc,ncd,Xd,Yd) :- before opp edge A

optimal path ((Xd, Yd, c(C), Xpl, Ypl IFrI),
counterclockwise ( Xdl,,Yd, c(C)-, Xp1,Ypl-IFJ )-,
tel] (user), wrte('lv/b 'Type 2) W~ry being plotted between edges '),
write (flab) ,write (I and 1) ,write (Ilcci) ril,
qoal point (,g,Yg), P Iv/- (Type 2) bdry *

translate line (Xb, Yb, Xc, Yc, Xd, Yd, Xdtr, Ydtr-),
di3stance (Xd,Yd,Xp,Ypl,Vdp),
assert shiortcut flag (Xc, Yc, YplYpl),
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pachlength C IXpl, Ypl I P), DI) ,
distance (Xb, Yb, Xpl, Ypl, D2calc),
add epsilon if zero (D2calc,D2),

* distanue (Xb,Yb,Xg,Yg,D3),
distance (Xc, Yc, Xi,Yd, Dcc),
distance (Xa, Ya, Xb, Yb, Dab),
distance (Xa, Ya, Xg,Yg, Dag),
distance (Xa, Ya, Xdtr, Ydtr, Dacitr),
distance (Xa, Ya, Xpl, Ypl, Dpla),
Coal is (Dcd^2+Dab"2-Dadtr^2)/ (2*DcdADab),
arccos (Cosl,Alphsabs),
sign _of_Alpha (AlphaAbs,Xa,Ya,Xb,Yb,Xc-,Yc,Xd, Yd,Alpha),
Cos2 is (D3^2MDab^2-Dag^2) /(2*D34Dab),
arccos (Cos2, Beta),
Cos3 is (D2^2+Dab^Z-Dpla^2) /(2*D2*Dab),
arccos (CosR3,Gammwa),
compute_angle of rotation (Xi, Yd,Xc, Yc,RotA),
connected (Xa, Ya, Xb, Yb, Xc, Yc, Xi, Yd, Conn),

/A changed Xc,Yc for Xpl,Ypl ~
plot lvis-bdry2 (before, Conn, Ci, Ce, Nab, Ncd, Alpha, Beta, Gaiime,

Dl, D2,D3,Dag,Dab,Xpl,Ypl,RotA),'.

pltli.dyaCeXaNabYcYcdY), /* after Opp edge *
optimalpath((Xc,Yc,c(C),,Xpl,YplIP)),
clockwise((Xc,Yc,c(C),Xpl,YplJP]), 1* discriminates btwn-OP's *

P' in opposite directions from opp pt. A
tell(uoer), write('lv/a (Type 2) bdry being plotted between edges 0),
write (Nab) ,write (' and '),write (Ncd) ,nl,
gjoal point (Xg,Yg), 1* lv/- (Type 2) bdry A
translate 'line (Xa, Ya, Xi, Yd,Xc,Xc, Xctr, Xctir),
distance (Xc, Yc, Xpl, Ypl, Dcp),
assert shortcut flag (Xci,Yc, Xpl,Ypl),
path lesigth((Xpl,YpllPJ,Dl),
distance(Xa,Ya,Xpl,Ypl,D2calc),
add epsilon if zero (D2calc, D2),
distance (Xa,Ya,Xg,Yg,D3),
distatice (Xc, Xc, Xci, , Dcci),
distance (Xa, a, Xb,'-b, Dab),
distance (Xb, Xb,Xg, g, Dbg),
disb~ince (Xb, Yb, Xctr, Yctr, Dbctr),
distance (XbT,Xpl,Ypl,Dplb),
Coal is (Dcd^2+Dab^2-Dbctr^2) /(2ADcdADab),
arccos (Cosl,AlphaAbs),
sign _of .Alpha (AlphaAbs, Xb, Yb, Xa, Ya, Xd,YXc, Xc, Yc, Alpha),
Cos2 is ID3^2+Dab^2-Dbg^2) /(2AD3A~ab),

a rccos (Co32, beta),
Cos3 is (D2^24Dab'2-Dplb^2) /(2A*D2ADab),
arccos (Cos3,Gawia),
compute angle of rotation (Xd,YXc, Xc, Xc, RotA),
connected (Xa, Ya, Xb, Yb, Xc, Xc, Xci,Yc, Conn),

/changed Xd,Yd for Xpl,Ypl (why Xd,Yd???) ~
plot lvis bdry2 (aft er, Conn, Ci, Ce, Nab, llcd, Alpha, Beta, Garmia,

plot_livbdry2 (be fore,Conn, Ci, Ce,Ul, 132, A,B, G, Dl,D2, D3, fag, Dab, V., Vy, RotAngle):
abolish (bdry, 1),

ahclish (thetal, 1),
calc lvi, -bdry (CL, Ce, A,B, G, Dl,D2,D3, Dag,Dab, Vx, Vy),
rotate -bdry (RotAngle),
reoels-dr~or fdiqonce(Conn),
bdry (ecry),
roveroo patlh list (Bdry, Rev~kdry),
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truncate off_,nmap(RevBdry,Finalndry),

8asert (initbd~ry ( I, N2j , inalBdry)),
tell(bdryout),write(' Type 2 'Lnl,
writeto-bdryfile (bdry, Edry)-
output to figure fle, *

plot ivis bdry2after,Conl,Ci,C,li,Z12,A,B,G,fll,D2,D3,Dbg,Dab,Vx,Vy,RotAngle):
abolish (bdry,l1),
abolish (done, 0),
abolish (thetal, 1),
calclviabdry(Ci,Ce,A,B,G,D1,D2,D3,Dbg,Dab,Vx,Vy),
invert bdry,
rotate -bdry (RotAngle),
remove last bdry_coord-if-disconinected (Conn),
bdry (edryl,-
reverse-path -list (Bdry, RevBdry),
truncate off mpap CRevBdry, FinalBdry),
assert (initbdlry ((NI,1U2J , inaladry)),

P tell(bdryoput),write(' Type 2-mnv '),nl,
write to bdry file (bdry, Bdry),
output to figurefile, A/

calc-lvis-bdry(Ci,Ce,A,B,G,D1,D2,D3,Dag,Dab,Vx,Vy)
assert (bdry ( Vx,Vyl)),
maxX (Xtlax), minX (X4±n),
LargeNumber is MXax - XMin) A1OO,
assert (sc -bdry pt dist (LargeNumber)),
CostRatio is Ce/Cl,
Tc is asin(CostRatio),
get timin (Dag, Dab, D3, Tlmin),
get -timax (8,Tlmax),
precieion (Precision),
DelTi Is (Timax-Timin) /Precision,
Tlinit is Timax 4 DelT1,

a1ssert (thetal (Tlinit)),
retract (thetal (Tlprev)),
Ti is Tlprev - DelTi,
Ti >- Timin,
assert (thetal (Ti)),
calc -lvis bdrypt(Tc,A,B,G,D,2,D3,Tl,Xl,X2),
store-ivis_result(Xl,X2,Tc,Vx,Vy), fail.

calc-ivisbdy ,,,, _,__,,,,)

abgolish(sc_bdryptdst,l), '

get tlmin (Dag, Dab, D3, Tlmir,)-
pi (Pi),
Cosi is (Dag^24Dab^2-D3^2)/I(2'Dag*Dab),
arccos (Coal.Tlminplus9C)..
TImin is Tlmlnplus9O - Pi/2, 1.

get timax(B,Tlmax)
pj (P1),
HitietyminuaB is Pi/2 - B,
Tima:x is 11inetymirius3, !.

calc Ivio bdrypt(Tc,A,,,D,D2,D?,Tl,Xl,X2)
T2 1s a31n(sIn(Tl)'3in(Tc)),
TinlusB is -Ti + B,
TcplusAminu3T2 is Tc + A - T2,
T2minusA is T2 - A,
T2minusG is T2 - G
Fl is sin(A) - ':os(T2)lsin(Tc),
X2 is (-DI sin (Tc) 'Cos (T2) cos (T~minuSA)

402' (cos (T2minusA) 'sin (C-) -cos ('2minusG) "F.1)
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41)3' (cos (72) /cos (71)i
(sin (B) 'sin (Tc) *cos (T2mnius.) +cos (TlplusB) An))

/ (Sin (TCplushMinu9l2)*'Fl
4cos (T2minus.)*'(cos (Tc+A) +cos (T2))),

XI is -X2' (sin (TcplusAminusr2) /cos (T2rninusA))
-DZ' (cos (T2minujsG) /c .s (T2minuisA))
4D3' (cos (T2) 'cos(TlplusB) /(cog (Ti) 'cos (T2minusA))), 1.

translate lise (Xref, Tref,Xl, Yl,X2, Y2, X2trans, Y2trans)-
DeIX is XI-Xref,
DelY is Yl-Yref-,
X2tranu is X2 - DelX,
Y2trans is Y2 - DelY, I

next -to -last ptU(X,Y,Xlast,Ylastj, [X,YJ).
next to last ptU(Xl,YlIRJ, (X,YI)

next to last pt CR, X,YJ), !

store ivis results(Xl,X2,Tc,V::,Vy)
not.(shortcut (_,,Vx,Vy)),
Xbdry is Vx - Ml - X26sin(Tc),
Ybdry is Vy + X2'cos(Tc),
retract (bdry (Bust)),
ssert (bdry ( Xbdry, Ybdry I List))), I

store ivis resLult..-(Xl,X2,Tc,Vx,Vy) /* The effect of rules 2 S 3 '
shortcut(_,,Vx,Vy), P' is to exclude the initial I/
Xbdry is Vx - Yl - X2*sin(Tc), I' portion of a bdry which '
Ybdry is Vy 4~ XZ'cos(Tc), /* starts at a s/c pt, as long*/
distance(Xbdry,Ybdry,Vx,Vy,Dnew), /* as the bdry is coming back '
sc bdrypt dist(Dold), /* toward the a/c pte and A

Onew >- Dold, P' include the later portion '
retract(sc-bdry-ptdist(old)), /* as it goes away from it, '
assert(sc bdry-pt dist(Dnew)), /P since thetamnax As calculated*/
retract(bdry(ej~ist)), /P for the non-&/c case and is*/
assert(bdry((Xbdry,YbdrylBuistJ 1), 1. I' too large for the a/c case.*/

store ivis-results (Xl, X2,Tc, Vx, Vy)-
shortcut (_,,Vx,VJy) ,
Xbdry is Vx - Xl - X2*sin(Tc),
Ybdry is Vy 4 X2*cos(Tc),
distance (Xbdry,YbdryrVx, Vy,Dnew),
retract (sc bdry-pt-dist (Void)),
Dnew < Dold,
assert (sc bdry pt,_dist (Dnew)), I

IIf edge AS is parallel to CD, AlpbaAbs will be 0, ao Alpha is 0. '
sign -ofAlpha (0,Xa, Ya,Xb, Yb, Xc, o, Xd, Yd, 01.
/- zi AD9 intersects CD on the S-side of An, Alpha Is positive. '
sign of Alpia (AlphaAbs, Xa, Ta, Xb, Yb, X,,Yc, Xd, Yd, Alphta#bs)

line intersection (Xa,Ya, Xb, Yb,Xc, Yc, Xd, Yd, Xi, YL),
distan;e(Xi,Yi.Xa,Ya, DIa),
distance (Xi, Yi, Xb, Yb, bib),
Dia >- Dii.

IOtherwise, AV intersects CD on the A-side of Ab and Alpha is negative. I/
sign of Alpha (AlphtaAba, Xa, Ta, Xb, Yb, Xc, Yc, Xd, Yd, -AlphiaAbsj.

/0 If X-0, return a slightly positive value, else leave X unchanged '
add epailon ifzero (X, X)

/I teturns Conn - conn if the two line segments are connected, '
/I and Conn - divc otherwise. *I
conneoted (Xe, a, Xb,Yb, X-, Ye, Xn, , conni).
coninected (Xa, Ta, Xb, Yb, Xb, Yb, Xd, Yd, cznn) .



connected (Xa, Ya, Xb, Yb, Xa, Ya,Xd, Yd, conn).
connected (Xa, Ya, Xi, Yb, Xc. Yc, Xb, Yb, conts).
connected (Xa, Ya,Xb, Yb, Xc, Yc, Xd, Yd, diso).

P* If the two edges are not connected, thq first point in the1
/0 Bdry list is not part of the boundary, but only there to/
/0 specify the point about which to rotate. 'I
remove la1st bdry coord -if disconnected (covn).
remove Inst bdry coordifCdieconniected(dIisc)

retract (bdry (Odry) 1.
reverse path iist (8dry, (X, Yl~eversedlBdryj))
reverse pathj list (Reversed~dry, RevisedBdry),
assert (bdry (Revivedfldry)).

0 Plot Ovis boundaries, between two hidden edges.

* Updated 12 Jan 89.

plotOvis bdry (b, b,Ci,Ce, Xa, Ya, Uab, Xb, Yb, Xc, Yc, !Icd,Xd, Yd)
ttl(user), /* 'before,' compared w~ith 'before'/
write('Ow/14(h) (Type 3) bdry being plotted between edges t),
write(flab),write(' and '),write(Ncd),nl,
abol ish (bdry,,, 1) ,
optimal path(IXd,Yd,c(Ca),Ypl,YplIOPiJl),
counterclockwise ((Xd, Yd, c(Ca) ,Xpl, t1 l1OPpi ),
path lenigth((Xpl,Ypl IOPrlI,Dplg),
opt inel path(C(Xb, Yb, c(Cb) ,Xp3, Yp3 IOPp3 I),
pathlenqth( (Xp3,Yp3Iorp3I,Dl),
02 is Opig - DI,

distance (Xa, Ya, Xb, Yb, Dab),
dflstance(Va,Ya,XpI,Ypi,V3),
distance (Xb, Yb, Xpl, Ypl, Dbpl),
distance (Xd, Yd, XpI, Ypl, Ddp1).
distance (Xa, Ya, Xd, Yd, Dad),
distance (Xc, Yc, Xr1, Yd, DcdJ,
distance (Xp3, Yp3, Xa,Ya, z),
pi(ri),
Cosl is (D3^24Dab^2-Dbpl^2) /(2*D3Deob),
arcco3(Cosl,A),
Co32 is (Ddpl^2fD3'2-Dad^2) /(2'Ddpl D3),
arccos (Co-92, Piminusfleta),
10 is P1 - Piminusflete,
Tc Is asir.(Ce/CJi),
compute angle of rotation (Xd, Yd, Xc, Yc, RotAngle),
caic bdry ptOviIl (A&, B, Tc, Xpl ,Ypl,.", 01,02,03,0, X2bdry, Y2b'dry),
calc rbdrypt-vsk4(A, B, Tc, Xpl, Ypl, Z, 1,02,03, Dcd, Xibdry, Yibdry),
abolil.s1Ibry )
assert (bdry((Xlbdry,Ylbdry,X2bdry,Y2bdry,Xpl,YplJ)),
roFtnte2_bjry (S-Anole),
L'rry ((X1,Yl, X2, Y21 ),
correcL error - n conn ed'.as(Xb, YL,Xc, Ye, Xl1, Ypl, X2',Y2, X2r, Y~r),

11.C,n- inry ta, ;, ul, Ce, X-s,Ya, flab, MY,, Yb, Xe, Yc, ilcd, Xd, Yd)
tell user), /0 'after' coimpared with 'after' *
write (10v/t10) (Tyre 3) L'dry being plotted between edqe3 '),
writJ ' (Id) ,wri te (' and ' ) , Lte(lcJ) ,ral,
abt-A J mh OJry, 1) ,
nrptimnal-pathf( xc, yc, c(cc) , x3, Yp3 Iorp3J),
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optimalpath(IXa,Ya,c(C),Xpl,YplIOPP1I),
clockwise-( IXo, Ya, c(C), Xpl, Ypl lOrpli),
path_Ienath(Ixpl,Ypl IC~plJ,Dplg),
D2 is Dplg - DI,
distance (Xa, Ya, Xb, Yb, Dab),
distance(xd,Yd,xpl,Ypl,D3),
distance(Xa,Ya,XplYpl,Dapl),
distance (Xc, Yc, Xpl, Ypl, Dcpl),
distance (Xa, Ya, Xd, Yd, Dad),
distance (Xa, Ya, Xb, Yb, Dab),
distance (Xc, Yc, Xd, Yd, Dcd),
distance(Xp3,Yp3,Xd,Yd.Z),
pi (ri),
Coal is (D3^2#Dcd^2-Dcpl^2) /(2403*Dcd),
arccos (Cosi, A),
Cos2 is (Dapl^24D3^2-Dad^2) /(2A*DaplaD3),
arccos (Cos2, Pimirtuq8eta),
8 is Pi - PiminusBeta,
Tc is asin(Ce/Ci),
compute angle of rotation (Xb, Yb, Xa,Ya, RotAngle),
calc-bdry-ptOviM(A, B,Tc,Xpl,Ypl, Z,Dl,D2,D3, O,Xlbdry, Ylbdry),
calc-bdry-pt OviM(A, B,Tc,Xpl, Ypl, Z,Dl,D2,D3,Dab,X2bdry,Y2bdry),
abolish (bdry, 1),
assert (bdry ( x2bdry,Y2bdry,Xlbdry,Ylbdry,Xpi,YplI)),
invert bdry,
rotate2_bdzy (Rotflnale),
bdry((Xl,yl,X2,Y2J),
correct error in conn edges (Xb,Yb,Xc,Yc,Xpl,Ypl,X2,Y2,X2r,Y2r),
assert-(initbdry(tab,tlcdJ, (X2r,Y2r,X1,YlJ)), I.

plotOvis bdry (b,a,Ci.Ce,Xa,Ya,Rab,Xb,Yb,Xc,Yc,Ncd,Xd,Yd)
tell (user), /* 'btfore' compared with 'aft.er' ~
write('Ov/D (Type 4) bdry being plotted between edges )
write(11abJ,write(' and '),write(11cd),nl,
abolish (bdry,l),
optircal path((Xb,Yb,c(Cl),Xpl,YplIO~plJ),
couftterclockwise ((Xb, Yb,c (Cl) ,Xpl, YplIOPplJ)),
path length((XpI,Ypl IOEpl),Ol),
optimalpath((Xc,Yc,c(C2),Xp2,Yp2IOPp2I),
clockwise ((Xc, Yc, c(C2) , p2, Yp2 IOPp2I)-,
path lenigth C (Xp2, Yp2 IO~p2j ,D2),
not(same (1,02)),
distance(Xpl,Ypl,Xp2,Yp2,')3),
dIstance (Xc,Yc,Xp'l,Yp1,Dupl),
distance (Xc, Yc, Xo2, Yp2, Dcp2),
distance(Xb,Yb,Xpl,Ypl,Dbpl),
distance (Xb, Yb, Xp2, Yp2, Dbpj2),
p1cri,,
Coal in (D3'^2Dcp2^2-Dcpl/2) /(26D3*Dcp2),
arccos (Cosi, Piover2plusAlpha),
A I s riover2plusAlplia - P/)
Cos2 In (D3^24Dbpl'^2-Dbp2^2 / (26D30bpl),
arccos (CosZ, Piover2plus~era),
0 is riover2plus~eta - (Pi/2),
Tc is asin(Ce/Ci)f
comput._a-ngt'_ef_rotot ior(Xa,Ya,Xh,Yb,PotAngle),
caic-bdrv-ptOvis0 (A, B, Tc, Xpl, Ypl, Dl, 02, D3, 0, X2bdry, Y2bdry),

assert (brlry((Xlbdry,Ylb'PJry,X2bdry,Y2bdry,Xpl,YplJ))I
inrrtbdry,
rotatc? bdry (RotAnale),
bdry(jVl,Yl,X2,Y2Jj,

cerroerr -ep inj e (XlP, Yb, Xc, Yc, Xl, Y1,Xir, Y1r),
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assert.(initbdry((Nlab,NcdJ,fXlr,Ylr,X2,Y2))), I

tei~user), write(' Bdry does not exist.'),nl, !

calc-bdry;ptOvis(A,,Tc,Xo,Yo,D,2,D3,X,X,Y)
TcplusA is Tc + A,
Fl is sin(A) 4 cos(TcplusA)*sin(Tc),
TI is COS (Tc) 11 (Sin (5) -sin (Tc) "Cos (TcplusA)) 4- COS (Tc4A+B) '171,
T2 is co3(Tc) - sin(TcplusA)*Fl,
T3 is cos (Tcpl'.sA)*cos fTc) A1ji (Tc),
Denom is cos (TcplusA) Acos fTc) -1cos f(Tc 13) ,cos(Tc) -sin (2*Tc+A+PJ) 'Fl,
X2 is (X1'Tl + D3*T2 + (D2-DI)AT3) / Depaom,
X is Xo - (X14X2Asin(Tc)),
Y is Yo - X2*cos(Tc), 1

calc-bdryptOvisM(A, B,Tc,Xo,Yo, Z,D1,D2;D3,c1,X,Y)
TI is sin(A+B)+sin fTc) "cos (Tc+A+B) -cos (To) 'sin (Tc),
T2 is 03*(sin(A) Isin(Tc)*cos(Tc4A)),
T3 is D2*cos(Tc)*sin(Tc),
T4 is Z'sin (Tc)'*cos (Tc),
T5 Is cos fTc) -cos fTc-A-l) +sin (To) sin (MD),
X2 is (Xl'Tl + T2 - T3 - T4)/TS:
X is XO - (XIX2'sin(Tc)),
Y is Yo + X26cos(Tc), 1.

ifX edges are connected then pt 8 pt C arpd bdry '
Pshoud start exactly at pt ri. */

correct error in conn-edges (Xb, Yb,Xb, Yb, Xpl, Yp,_,,Xpl,Ypl).
/4 If edges are not connected use the '
/* bdry point as calculated. */

/0 If edges are part of the opponite edge, then */I
P bdry should start exactly at the opposite point./
correct-error-in-app_edge(Xb,Yb,Xc,Yc,_,,Xopp,Yopp)

opposite point-minus (Xb,Yb),
oppo3ite-point plus (Xc, Xc),
opposite point (Xopp, Topp).

P If not, then leave Start of bdry unchantged. '
correct error in app e.,dge (-,,,X,Y,X,Y).

plotoebdry computeS IICA rnterior Oppoisite-Edge Doundaries- (Type 5)
Asswnes no shortcutting!

' Updated 12 Jan 89.

plotoebdry(Ci,Ce,Xa, Ya,Xb,Yb)
plotoe~hry (Ci,Ce, Xe,Ya,Xb, Yb, B).

plotoebdry(Ci,Ce,Xa,Ya,Xb,Yb,Ddry)
opt~imal path ( Ib, TbII,D1),
Optim~l path C Xa, Ya Ii, 02),
distance(Xa,Ya,Xb,Yb,DU),
comnpuLeangleoLrotationfXb,Yb,Xa,Ya, aKotAngle),
plot 2oehdry (CI, Ce, 01,02-,03, Xb, Yb, RotAngle,Bfdry),
Ptell(user),write((Xn,Ya,Xb,Yb)),nl,'/
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Plot2oebdry (IntCost, ExtCost,DlD2,D3,Vx,Vy,Angl.-,RevBdry)
initialize for5,
tell(user), ninl,
16 write('IICA Int Opp-Edge (Type 5) bdry being plotted for edge 1), ATc is asin(EXtCost/IntCo~t)'
Calc;oebdxy-pt (TCI ,D2, D3,Vx, Vy, Angle),
rotate-bry (Angle),
retract (bdry (odry)),

* remove last pt (8dry, Revfldry),
truncate-off map (Revodry, Flnal~dry),
assert (ititbdry (oe, Finaladry)),
/' teil(bdryo.ut),write(' Type 5 1)"1
write to bdry file (bdry, Revfldry),
output to figure file, *

calc-oebdry-pts (Tc,D1,D2,D3,V~t,Vy,Angle)
XII is (D34D2-D)/2,
X22 is Xll/sin(Tc),
Xa is V. - +Xii,
Ta 1s Vy,
Xb is Vx + X22*ain(Tc),
Tb is Vy 4 X226coa(Tc),
assert~bdry((Xa,Ta,Xb,Yb,V..Vy,)), 1.

initialize for5 :
abolish (bdry, 1), !

/A First check -wh-ether bdry start$ on the map. IC no, call tzunc. .2 '/A if not, call trunc. .3 4/
truncate off map([Xl,YTiXYIBI 2)

;ii (HinX),minT (HinT),
maxX (MaX),maxY (Mar.Y),
DelX is lHaxX - HinX,
XI > HInX, Xi < HaxX, Ti > HinY, Yi < 14axY, P starts Oil the map.*/truncate off map2(!XI,TlXTIB] 82), 1.truncate off -map((Xl,Yl,X,YjB,,82) :-/* starts OF the Map.*/truncateoufmarg(rtxlYIXT

18 l, 2),1truncate ff apZ((Xl,Yi,X,TYjj,fXlY
1 3 2 j) /A Assumes that Bdry A/m;inXC(HinX),mInY (HinY), 1A starts Off the msp.*I

maxX (MaxX) , maxY (HarY),
Deix 13 flaX - InX,
IfiiX2 is IIinX -O.l'De1X,
flinT2 is HinY O.I*DeIX,
flarX2 is ZIIxX 4 -j.l*DelX,
IfaXT2 is tHsxy 4 O.1r)elx,
X > IMisX2, X < HaxX2. T > HinT2, T < FfaxTZ,
tkuncate off m3p)2 ((X,YTI 8, 82), !truncate -off - ap2(IXIT,,,eJ -(Xl TXTYj) :- .

truncate -of'f -map2((X,Tj, (X,Tj):-!
truncate-off map3(Ixj'l'lXTj,(xiTi'XTYj). /* Bdry 13 entirely off the map

PA except perhaps for time last pt. Atrurncateoff - ap3(Il,1,Y,P
1 2, /0 fidry starts off the map.*/L runicote off u:ap(fX,Yme),02), I

assert~hlortctjtflag (Xv,Tv, Xv, Tv).
assert shortcut flag 'Xv, Tv, Xpl,Tpl)

assert-(shortcut (Xv,Tv,Xp,Tpi)), 1.

regilon eliat(P),
get XYcw edoe (v1,YIIF, ~a, TaXb, Thu,

countercloc?.wise((Yi IYc((3 Xl Tilol'])
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regiortieli at (R;)
getXYccw--edge (Xl, Yl,R, Xa, Ya, Xb,-YbJ)I
vu)zaYCXiYi,Xl,Yl,Xa,Ya), I,

get X~cw edge(X1,Yi,,[Xa,Ya,_,,Xb,YbIRJ,[XaYaXbbj)
oti ray (Xl, Yl,XI3,Yb, Xa, Ya), !.

get X~cw etige(XIl, Xa,Ya,_,,Xb,bIp.;,ge)
get XYcw edge (Xl, Yi,R, Edge), !.

getXYccw-edge (Xl,Yl, (Xa,Ya,_,,Xb,YbIRj, (xa,Ya,Xb,YbJ)
onray(X],Yl,XaYa,Xb,Yb), !.

getXYccw-edge(Xl,Yl, (Xa,Ya,,_,Xb,bIRJ,dge)
get XYccw edge (Xl, Yl, R, Edge), I
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r ile "boundary join" or "hi"

Updated 30 Jan 89

"bdry_join" truncates boundaries and joins them together into
'a network of the active boundaries inside a homo' meous-cost region.

AA.*.AA**AAAAA*AATop-level predicate ***A *~a*aAAA

bdty join
initialize,

assert (old -bdry set ([)),
assert (current_bdry_set (Al))-,
retract(current-bdrys.et(Acurj), 1' start of while-not-done loop ~
retract cut (old bdry set jAold)).
not (same set (Acur, Aold))_,
assert (old bdry_ set (Acur)),
next level bdrys(Acur,Anev ,
tasert (curr-ent bdry set (Anew)),
done (Anew), /* end of while-nct-done loop I
get~ final bd rys(Afinal),
output (Afinal),
cleanup, halt, 1.

bdry join :
tell (usfer), ni, nl,
writeVC Checking for center shortcutting'):nl,nl,
elim inicomplete trees,
get_final-bdrys(Afinal),
bdry edge intersections (Afinal, DEl),
find-exact-opposite ptCBEI,P),
recurse uniless done CP),
otstput (Afinal),
cleanup, halt,

bdry join :
tell (user), nl,nl,
vrite(' ERROR in ''bdry-join'': doesn"t converge),nl,nl, V.

/aa aa Aa h AA aa.hAhASecond-level predicate, AAAAlAlAaaaAA

initializ:-
tell (user),
nl,nl, writeU'Boundaries being joined:'), nl,nl,

fIrat levve lbdryaCA2)
number of edges(111,
index list ltoJ(1,11, IndexLisot0),
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assert (indices (IndenList)),
first lev~el -bdryal(Al,N),
order A.ndices(AlA2), 1.

next-level bdrys(Al,A3)
reset (AI,A2),
propogate next level bdrys (A2),
get_active_bdrys3et(A3), I.

doneJA) :
one bdry tree (A),
tell (user), ni, n3.,ni,
write to screeti(' -ol single bdry-tree'),nltnl,nlt 1.

get final bdrys (A) :-
get tbdrya(A), I

bdry_ edge _intersectionoiTj, (1).
bdry_ edge _irtersecticns(((I,J1,,LrtJILI, (((I,3JtgLJIBEI1)

edge bdry__intersect-*on (K, 1,J) ,LPt),
bdry edge intersections CL, SE!), 1.

bdry edge intersections~i((I,0,3LPt]I I,BEI)
bdry_ edije intersections CL, BE!),

elim incomplete trees
tree(C[I I ,K
not (complete.-tree (tree(( 1,J),'LR))) t
eliminate -tree tbdrys (tree ([1t,,L, K)),
fail, !.

eliir incomplete trces : 1.

find- e~xact-opposiwj_ pt(SEI,P)
find-exact-opposite ptl (BEI),
opposite -edge (QE),
new opPpPt (OE Or, P1,!.

fInd exact opposite ptl (Ii).
find e -xact-opposite -ptlC( i(,J,B, (LX,LTYj) IEr))

optimal path ([LX, LY,c(C) ,X2,Y2IOPJ),
update opp e~dge (1,3, LX, LY,c(C),X2, X21011),
find-exact-opposite ptl(mE), !

recurse-unless-don2 C(Xopp2,Yopp2j)
not (first -pass -done),
opposite point (Xoppl,-Yoppi),
not (ame ( Xoppl,Yo-ppl), (Xopp2,Yopp2J)),
retrat.t (opposite point CXoppl,Yoppl)),
assert (opposite point-(Xopp2, Yopp2)),
avse~t Cfizt pasdone),
cleanup2,
bg2, !.

recurse-u nless done([Xopp2,YoppZj)
tell (user) , nI, nl, nl,
write to screenC' DOIC Finished Second Pasaf)tnl,nl,nl, I.

output-CA) :
write heading,
write bdry3_to file (hca opn,A)-, nl, I.

cleanup :

abolishittbdry, 5),
she] 1st; (curresit-hrIiy Yset, 1) ,
abolish Cbdry list, 1) ,
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abolish (bdry intersection, 5),
abolisI (nitbdry, 2),
abolish (tree, 3),
tell- (user)
nl, ni,
write ('Boundary generation complete: results in file "1hca Opm' P11),
ril, ni,

cleanup2 :
aboli~gh(ctr, 1),
abolish (tbdry, 5'),
abolish (current bdry .set, 1),
abolish (bdry list, 1),
abol.;sh (initbdry, 2),
abolish (region elist, 1),
abolish (pseudo optimal path, 1),
abclish(tree,3),
tell (user),
nl, nl~write ('Pass Two beginning'),nl,nl, I

/AA A A A AA AA AAA irn subordinate predicates AAAAAAA

P Assert the points at which bdrys are 'anchored' to the region edges A

assert anchors :
number-of-edges (11) ,
index list ItoJ (1,?1, indexListl),
asei:tanch-Drs(ndexList), 1.

assert_ anchors((j) :- !
assert._anchor(([I,3j LI)

ittbdry(11,3], (X,YIBJ),
assert (anchor (X, Y)),
assert anchors (1,), I

reset(A,Al) :
abolish (?bdry,-5),
abolish(edge -it_pt,33,
order indices (A,Al),
reassert -tbdrjs (old, Al, 1),
abolish (ctr, 1),
assert (ctr (1)) ,

/AAA*.*AA "first-livel-bdrys" s3ibordinate predicates *AAAA/

first .leve 1 bdrysl (A, ii)
retract (indices (inde.-List)),
truncate ';slt lc :ci bdrys (Indexbist,11),
retract- all and rtn shtortesnt tbclrys (Ghort!3dry ),
i-tcliing pairs (ShortBdrys, Pairedfldrys),

bdry edge intersections (Shortodrys, Edgelntbdrys),
set subtraction (EdgclntBdrys, Pairedfldrys, Edgelnitadrya2),
cons (EdgeinitBdrys2, PairedBdrys, Activeadrys),
reassert -thdrvn (oldi, Ae~t iv^d'yy, 1.1,
11minu.-Yl is 11 - 1, .

not(list lentnAtiveBdrys,lrninusl))
tiot (lisL Iensjth (ActiveBdrysn, 1)) ,
inden list (Ativefldrys, lndexbl),
set - ubtroction(lndexList, lndexl, lndexL2),
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not (samteset (IndexList, indexL2)), PA If same, no new bdry pairs *
assert (indices (!ndexL2j),
first,_level bdrys!(A,4), I

first-level -bdrysl(A,N)
assert singles (1,1),
get tbdrys(A), 1.

matchitng pairs ([rirstBlRestj,RevRest)
matching pairsl (irirstBI'testj ,FirstB, RevReet), 1.

matching _pairsil, j) .
matchiing pairsl([I IDlast, Blas;, LPtfirstjJ, (IDfirst,8first,LPtfirst),

([IDIast,Blast,LPtfirstj, IlDfirst,Riirst,Lrtfirstjj) :- .
matchting pairs! (((IDlast,Blast,Lrtiast~j, (IDfirst,Bfirst,LPtfirstt lj)
matchiing pairs! (I (DI,BlLPtlJ, (102, B2,LPtll RestJ,Bfirst,

((!D1,Bl,LPtlJ,(102,B2,LPtljRevRestJ)
matchinig pairs! (Rest, Bfirst, Re~P~est), !

matching pairsl ([Bl,B2tRestJDfirstRevRest)
matchiiig pma!((D2IRestJ,BfirstRevRest), !

truncate lot level bdrys(IJJ,H,) :-. /4- Base case
truncate_1st level bdrys(I(1,lJ,1,2J,11) P' Lost pnir of bdrys: A

Tnitbdry((1,141,(Xl,YlIBlJ), P succetds if they intersect. '
initbdry((l,21, (X2,Y21B21),
bdry intersection ( Xl,Xl IBlJ, [X2,X21D21, IntPtft-t'nc,B2trunc),
get counter and increment (CO),
get~counter~and-increment (Cl),
assert (tbdry (new, CO1 (1,1) *Bltrunic, Itt't) ),
&ssert(tbdry(new,C1, !1,2L.B2truc,lntrt)),
region elist (R),
truncate -bdry and edges ((1,141, (Xl, Yl IBI,R),
truncate _ltlevel-bd rys(i (_,_),N), 1.

truncate 1 st level bdrys ( ((Nminul,4J,lhl, 11 Rest) ,1)
timinusi sH! /-* Next to Last pair of bdrys: ~
initbdry((Hminusl,r4jiXl,YlIlj), P4 succeeds Jf they intersect. '
initbdry([1,NJ, (X2,Y2JB2)),
bdry_ intersection ( Xl,Y! 811, (X2,Y2tB2 , Int~t,Bltrunc, D2truzc),
get-counter an~d incremet (CO),
get -counter_-and increment (CI),
assert (tbdry(new,CO, (flminus!,li,Bltrunc,lntrt)),
assert(tbdry(new,Cl, (1,lj,B2trunc,Int~t)),
region elist(R),
truncatCe -bdry and edges((14,Ilinuslj, IXl,YlIB!1,R)-,
truncate !st-level-bdry(((;,!)IRet,4), 1.

truncate_1st level bdrys(1,J,J,KJIRetJ,4) P Succeeds if bdrya are*/
Tnitb~dry(1I,JJ, IX1,YlIBlI), P adjacent and- interaect*/
initbdry(JJ,KJ, (X2,Y2JD21),
Ldry initersection((X!,Y'Jal), X2,Y2IE2),Intrt,bltrunc,B2trunic),
get_counter -and - ncrement ( .OJ,
get coun1ter and increment (C!),
assert (thdry (new, CO, (1, J), bltromic, Int~t))
assert (tbdry (new, Cl, (3,1j, 2trunc, lttt),
region elist (R),
truncate -bdry and edges([I,JJxl,Yl!31),fl),
trnaeltlvlbrs(JKiet,*) 1.

truncate 1st -level bdrys(I (I,JJ, II,L)JlRestI,hI) :
orderefll,U,11,01), P Recurses if previous 0/
initbdry(Jll,3JJ, (X,Y1ID!J), /'adJacrnt and intersect4/
region eliot IR), Prules have failed. '
truncate bdry anid edgeo((1l,0JJ, (Xl,YlISlI,PJ),
truncate 1st level bdryo(liK,LJIRstj,ll), 1.

P Avverti a temp tbdlry whici stops at the region edge if Initbdry(l,.7) 0/
Pinternects a region opposite cdqro. Always succeeds. Also assertn A/
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/6 ledge~bcryintersection(K,(r,j],[X,YJ)I for each Intersection point. *
truncate bdry and edges(,3J, 'XflSJ1 [X1,Y1,h(Q),K,X2,Y21R3)

not(bdrystart-atedge(I,,K)),
bdry intersection ((X,YIBJ. IXl,Yl,X2,Y2J, IntPt,Dtrunc,Sltrunc),
get -counter-and increment (CO),
assert (edge _bdry intersection (I, (1,3)1IntPt)),
assert (tbdry(tenip,CO, (l,J,Btru-nc,IntPt)), 1.

truncate bdry and edges((il,3J, X,YIDJ, (Xl,Yl,_,K,X2,Y21R1)
trusicate bodry_*iWdedge (11, J), (X, Y18)R, I.

truncate bdxy__and edges(Il,3J, [X,YIBJ,[) :- 1.

assert-singles(1,N) /* If any- vertex's 1st-level bdry ~
Xplusi is I + 1, /4 has not yet been generated, do A
1IlU31 < N, /* so now.

aaetassqetsingls) is~*,

Iplusi is 1 4 1,
1IU31 < It,
not (tbdry (,_, I luslj,_,)),
initbdry((I, IpluslJ,B),
get counter and increm--nt (Ct r),
*ssrt (tbdry(new,Ctr,-(t,IpiuslJ,B, I)),
assert singles (Iplusi,H2), 1.

assert singles (l,24)-
Iplusl is I +1 1,
Xplusi - 24,
tbdry(,_,N,lJ, _, _), '

assert singles (1,24)
Iplusi is I + 1,
Iplusi - M*,
not (tbdry(,_, (2,1,,)),
initbdry ((l, III, ) ,
assert(tbdry(new,Ctr, (24,11,5,()),I I.

'** 'next-level-bdrys" subordinate prtdicater **A*A

propogate nert-level bdrys((]) :- .
propogate next level bdrys(( (1,J3,Bl, (LX, LYJI IA])

tbdry(_,,,LJ,2,(LX,LYy), 1* Previously connected at end .

not (same (11,L1)) , IA Vl- sam~e bdry ~
ords~red (I1, i, 12, L2)
not (tbdry(,, (12,L23, (LX,LYI],_)), P* Not previously asserted *
ordered(I1,01,13,33), /4 Use indices in order A/
initbdry ((13,.731, Birull),
ordered (Ii, Li,14,L41,
Initbdry((r4,L4j,B12),
bdtry initersection (Brull 92, (IntX, IntY), _, Bl2trunc),
within -tolerance (?,X, LY, IntX, Inty) ,
get correct.half of bdry .81,82, 912, (LX, LYJ,Bl2trunc, LX12,YlI1l1corJ),
gttia.st-pt (fXl12lBl2corJ,Bl2Xlast,a12Ylast),
get counte r and increment (Cl),
aseort(tbdry(.tw,C1, (I?,L2J, ILX,LYIB12corl. (B12Xlaat.52Ym111
proponate next-levelbdrya(A), 1.

propogate,_next level bdrys(i(LI,jI,D,Lrt1IAJ, P Diszegord Wrry wbich is A/
propoatenetleve1lbdrycA), I. /0 paired with another bdry or

/* intersects a region. edgo. 'propogate nexrt level bclry((((l,d,D,l,lJJIAJ, /0 Disregard single bdry1
propagate -ne'At-level bdrys(A), I.
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get correct half of bdry(EX1,Y]I 18), (X2,Y2lB2J, 1X12,Yl2l8121,
(X1l'YiJ,il2ir,(Xi,YijIl2corrJ) :- /Aintersect a line from Bl ~
Xltest is Xi4((Xl-Xi)/20). /A to 82 drawn just inside their pt of*/
Yltest is Yi+((Y1-Yi)/20), /11 intersection, with the new bdry.1
X2test is Xi+((X2-Xi)/20), P If no Inters, bdry is outside B1 ~
Y2test is Yi+((Y2-Yi)/20), /* and 32, so this is correct half. A

not(bdryintersectiontexact(Xltet,Yltet,X2test,Y2testj,Bl2tr,_, _, ),

reverse path list(Dl2tr,(_, _ l82corrJ), 1. P~ but reversed. *
get correct half-of-bdry (Bl,_, 012,

(Xi,YiJ,_,(Xi,YijBl2otherhialfj) PA Otherwise get the other A/

reverse path list (812, Bl2Riv), PA half of new bdry. A
bdry intersection (81,Bl2Rev,_,_, D2trunc),
reverse _path list (Bl2trunc, C_, _jol2othierhalf)), 1.

get-active-bdryset(_)
tbdry(new,_,(I,J1,B1,LPtl),
intersect -with -canididatebdy(,B1Lt)
fail, 1.

get-active-bdryset(A)
retract-all-and rtn sh1ortest-tbdrys (Shortfldrys),
while chianging~rea~sert_tbdrys (Shiortfldrys,'I,_,_1,
reset_last_pts,
get tbdrys (A), !

intersect with candidate bdry (1,J, EXl,YlIB1J,L~tl)
get tbdryl~or3 (F,_, (X,KJ,B2,LPt2),
rnot (same (F,temp))1  / not a temporary bdry '
not (3ame(IXl,Yl),Lrt2)p, /* not a child-of 81l *
ordered (1,3, 11,1),
ordered (I, K, 2, K2),
not(same(IIl,.7J,(12,K2j)), P* not the same as 81 *
interior -intersection(X1,X1IBJ,LItl,82,Lrt2,IntPt,Rltrunc,B2trunc),
not (asserted tbdry((12,K2J,IntPt)), /,*If 81 intersects*/
get counter and increment-(CO), /* the candidate, then 41
assert(tbdry(temp,CO,112,K2J,Bztrunc,lntIt)), /* assert both as temps *
iiot(aserted-tbdry([Xl,311,lntPt)), /*if not asserted h

get -counter and increment (Cl),
assert(tbdry(temp,C1, (I,JiJ,Bltrunc,IntPt)),
fail, '.

intersect with candidate bdrya(r,J,tX1,Y1IBlJ,LPtl)
get tbdryl~or~l (r,, (3, ,B2, LPt2),
not (same (F',temp)), P* not a temporary bdry '
not(same([Xl,Yl),LPt2)), /s 3ot a child of 81 4

ordered (1,-',11,J1),
ordered (.;, L, 32,1,2y ,
not(same((11,011,(32,1,21)), /P not the same as 01 *
interior intiersection((X1,YI81J,LPtl,D2,Lrt2,lntPt,Bltrunic,82trunc),
not(asserted tbdry(132,L21,IntPt)), /*1f 81 intersects*/
get counter a 'nd increment (CO), i* the candidate, then '
assert(tbdry(tep,CO, 132,L2,02trunc,lntVt)), /11 assert both as temnps-*4/
not(san)ertedtbdry((I1,3ljIntPt)), P4 if not asserted#/
get_counter -and -increment (Cl),
assert (Lbdry (temnp, Cl, (11,.31), 81trunc, IntPt))
fall, !.

intersect with -candidate_bdrys(l,3,(Xl,Y1IBIj,LPtI) /* Intersect hrdry with
region eJ~st (f), P region edges. 4

tzueicakI!bdryarJ-ede((I, J),JX, Yl 11) ,R) , I ,

aoaertcd thdry((I,31,Lrt) /0 tbdry is already asserted-*/

asserted tLbdry((I,.3j,IXil,Yilji 14 tbdry with appm- last pt
tbdry(,_, (,Jj,_,(Xi2,Yi2j), P4 is already asserted 0/
wiliin toleranice(Xil,Yil,Xi2,Yi2), 1.
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retract all and rtn shortest tbdrys C ((I,J1),BminD,LI'tmintiIlResti)
tbdry(_,,(2,3J,17C,YIBI,_), I* Retract all 13 bdrys A
retract IJ-bd rys(I,J,Bdrys),
get_shortest_tbdry (Bdrys, -, BninD, LPtminD),
retract all and rtn shiortest_tbdrys (Rest), I.

retract all anid rtn shortest tbdrys ((3) :-

retractX3 bdrys(I,J,U((X,YIBJ,LPtJidrysJ)) P Retract all bdrys with '
retract~tbdry(_,_,I,J3,IX,YIB,LPt)), /* index 1,J, and return ~
retract 13 bdry3(I,J,Bdrys). /* them in a list *

retract_23 bdrys(_, _,C): !.
xretract_1 bdry(,,X,Y,I(X,YIB,LPtIBdrysJ)): /* Retract all bdrys ~

retract(tbdry(_,_,I,3J,[X,YIBJ,LPt)), Ph with index I,3 which A

retract- 13 bdrys(I,3,X,Y,Bdzys). PA have same starting pt A

xretractl_Jbdrys(_, _,,t) :-. P rtn them in a list A

get shortest tbdry(J,lOOOOO, _,_) :- !
get shortest tbdry (((B, LPtJliadrysi ,tew~inD,NewB,NewLPt)

pathlength (B, 0),
get-shortest tbdry(Bdrys,MinD,PminD,L~tminD),
get-minV-and_B(D,DLFt,MinD,BminD,LPtmio,ewMinb,24ew,fl~ewl.rt), 1.

get minD and-B(D,B,LPtB,MinD,BminiD,LPtminD,D,8,LrtB) -0 < MinD, 1.
get minD and B (D, B, LPtB,M-inD, SminD, LPtminD,MinD, DminD,LPtminD) :- 1.

while changing reassert tbdrys (Setl,Ctrl, Set2,Ctr2) :
reassert -connected tbdrys (Setl, Ctr , Set2, Ctr2),
not (sane set (Setl,S't2)),
while chainging reabiert tbdrys (Set2,Ctr2, _,_), 1.

while changing reassert tbdrys (Setl, Ctrl, Set2, Ctr2)-
same set (Setl, Set2), I.

whiile changing reassert tbdrys (Setl,Ctrl,Set2,Ctr2)
write-to-screen('Prror int -reassert tbdrys- t),nl,f.

reassert -connected tbdry3((I,Ctr,(J,Ctr) :- !.
reasssrt connected~tbdrys(((I,3J,B,LPtJIActSet),Ctr,InteriorBs,Ctr2)

connected ito an anchor ((1,33,B),
ordered (1,3J, K, L) ,
assert (tbdry (old, Ctr, (I,J3,B, Lt) I,-
Cplusl is Ctr4l,

reassert connected tbdrya*(I I I,J,B,L't)IActSet),Ctr,
Thix,3~,,rt~lgiateriorssI,Ctr2) :
reassert con nected tbdrys(ActSet,Ctr,Interiorls,Ctr2).

connected to an anchor(11,3J,BO) :-P Bdry starts at a region edge *
ad jacent edges (1,3), 1.

connected to--an -anchor(j2,33J (Xl,YlIBI) - /A Bdry starts at last pt of *
tbdry(_,,(,L.B2,[Xl,YjJ), /* another anchored bdry.

coninected to an -ancho.r((7,33,(XYlIDJ) :- P Bdry starts at first pt of 0/
tbdry(, I,LJ, (Xl,YIB2],, P* another anchored bdry. #/
conniected to an anchor((K,L),82), 1.

/44*,*~~44*~"o~"ztz! -r -1.1nat PrekUaLes

/E xample 'tree' fact (indented for clarity only - root is at left):

tre((171,tree((7,31, tree((7,2J, te(7l,'), I)
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treeU13,7), tree(13,41,' (],' (3'),
tree((4,7J, tree((4,51,' (3',' (')t

tree((571,tree (65, 61,' (1',' )

17,31 [3,71

17,21 [2,31 (3,41 (4,71

(7,13 (1,21 (4,5) (5,71

156 6,7)

one. bdry tree((((I,J1,B,LPt3IAI)
abolish (tree, 3),
number of edges (II),
assert-leaf-trees(1,tN),
while changing combine trees (N),
number-of-trees NT),
HT -- 1, 1I.

while changi ng combine trees (N)
abolish (number of trees, 13,
assert (number o f trees (H)),
retract (number_of_trees (PrevN;T)),
combine-trees(1,11,NT),
assert(number-of-trees(IIT)),
PrevOT -- NT, 1. P4 fails here until no longer changing A/

combine trees (I,H,ZNumTrcees)
I < N1,
tree (1(1,J33, Leftl, Right!),
tree ([3,K), Left2, Right2),
not (same (I, K)),
succeed -if joined (1,J,K),
retract (tree ( (,31, Lefti, Righti) ),
retract (tree ((3, KJ,Left2, Right2)),
assert(tree([I,Kj,tree((I,3J,Leftl,Rightl),tree((3,K1,Left2,Right2))),
lpluol is 1 4 1,
combine -trees (Iplusl,18,NumTrees), 1.

combine trenS(1,N1,HUMTreea) :/I Final case, where tree([1,3J1,,) *
trec((I,33,Leftl,P.ight1), /* in combined with tree([J,Ij,,) 4

tree ([3,!), Left2,Right2),
not (3ame (Lefti, Left2)),
succeed if 7one(,1), /P TFrMP: always succeeds. Won't always '
retract(tree((I,3J,Leftl,Righitl)), P succeed for center-o/c '
retract (tree( (3, Ii, Left2, Riglht2))
assert(tree-((I,11,ree([I,J3,LeEtl,Rigitl),tree(3,-J,Left2,Rijlt2))),
count trees (Humfrrees) , I .

combine trees(1,11,1) :-' Lat iter. of while-chinging loop, 0
tree((1,1I,Lcft1,igit1), . 1'where Single trev is tree([I,IJ,..) 11

comin.)te trees (I,,NtwmTrees)
I < N1,
Iplusi IS 1 4 1,

coznl~ine t-rees (Ni,ii, umTrees)
tree (([If, 31 , Left!, Rightl),
tree (I, r) , Lctt2, RiqhL2) ,
not (same (11, r),
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succeed -if joined (tI,J.,K),
retract (treeci IJLeftl,Rightl)),
retract (tree ([0, KI,Left2, Righit2)),

count trees (NwnTrees), I.

Vcombine-Lrees Cf,11,11umTrees) :- P ase case for all but last Lteration '
counLLrees (lwiiTreea) 1 1.

count-trees (Nttfrnrees) :
abolish (count, 1) 1
assert (count (0),
tree (_,_,)J,
retract -cut (count (C)),
tlwnTrees is C 4 1,
assert (counit (lumTrees)),
fail, 1.

count trees (flwnTrees)
retract (count (flumTrees)), t

assert-leaf-trees(,11)-
I -C ti,
1pluai is I + 1,
aesert (tree C I,11plusli, LI, C I
assert-leaf-trees(Iplul,l), 1.

assert leaf trees Cli, X)- :-
assert(treeC1111,11, Ii, C)), !.

/I Succeed~s If b'Jrys 1,J , .,K , and 1,r are joined at one poit /

succeed it joined (1,3,11.
aucceed if joined (I,1,0).
succeed -i f jointed (.7, 1,1) .
succeed-:- fjoi ted (1,,,K)

ordered(I,3, 11,31),
tbdry(_,,Il,lj,lXij,YijIBijj,(LXij,LYijj),
orie red (J,K, 32, K2),
tbdry(,_, (2,K2J, IXjk,.Yjklejk], (LXjk,LYjkI),
orderoed (TIM , 13, K3) I

siatch3-pt3(Xij,Yij,LXij,LYij,Xjk,Yjk,LXjk,LYjk,Xik,Yik,LX~k,Lik), I.

P' Sue'ceeds If there is a matc'. among any permutation of the three ~
/I pairs of points: First check for exact mnatches: ~
match 3 pts (X, Y,,_, X, Y,,, X, Y, _
match3 pts (-,,XY, XY,,, #X Y,,).
match 3pt(,,_ ,_,,,,._

match 3 pts (-,,X, Y,,,#X, X,Y, _, _I
snatch -3-pta (X, Y,_,_,X,Y,-,-,,-,X, Y)
match 3 pts (_,,XO IX, Y,-#,,,X, Y)
match 3tsXY_,__
match 3pta(_, _,Y _,X,Y ,,.,.XY)
P Uf 11o exne-t match, clieck for approximate matches: 4

matLchs~lpts(XI,Y,_,,X2,Y2,_ X.1 ,,Y1,
within - oJerssce(X1,YI,X2,Y2),
within tolerance (XI,YX,X3, T3),
wijtiiu, tolerance (X2,Y2,X3,Y3),I.

match .3_pts (,,X1, YI,X2, Y2,_,,X3, Y3,,_)
within tolerance (X2, Yl, X2, Y2),
withi.4si tolerance (XI, Y1,)3,-y) I
witliuui-tlerasce (X2, Y2, X3,-Y3)I 1.

vitii tolernceK1,Y1, X2X, 2, ,Y,, 3 3

i:thin tolerarce(X,Y1,X3,73),

matchu3-t0.3 r1, ceX2, Y2,X3,y3 Y -n



within tolerance (XI, Yl,X2, Y2),
within tolerance (Xl, YI, X3, X3),
within-tolerance(X2,Y2,X3,Y3), 1.

matchi3_ptsm(Xl,Yl, _, _,_, _,XZ,Y2,X3,Y3,_,)
withizi tolerance(Xl,Y1,X2,Y2),
within tolerance (Xl,Yl,X3, Y3),
within tolerance (X2, Y2, X3, Y3), 1.

match_-3_pts(_,_,X,Y,_,,X2,Y2,X3,Y3, _, _)
within tolerance(XI,YI,X2,Y2),
within tolerance(Xl, Yl,X3, Y3),
uithin tolerance (X2, Y2, X3, Y3), !

within tolerance (Xl,Yl,X2,Y2.,
witini toJ.erance(Xl,Yl,X3,Y3),
wiLhin-tolerasice (Y.2, Y2, X3, Y3), !

match3pts(_,_,XI,Yl, _, _,X2,Y2, _, _X3,Y3)
within tolerance CXI, l, X2, X2),

witin ttoleranice (X2, X2, X3, Y3), !

/4AAAAA"elim Iincomplete trees" subordinate predicates ***064"A/

/0 Succeeds if top node of tree is anchored to an edge by means of
Pan edue-intersection. If so, the tree is 'complete', sii.ce A

/I each leaf node is anchored by means of a region vertex.
complete tree(trete((I,31,L,R))

ordered (1,,11,31),
tbdry(,_, (1,31),(X,YIjj,LPt),
odge bdry instersectios C, IIIl,, (X, XI), !

compete Iree(tree(jI,31,L,R))
ordered (1,3,11,31)
tbdry(,, 111,31, IXYIFli,LPtI,
edgebdryintersectioi(-, Ill,3l3,LPt), I

PRetracts all ;)dtys aasociated with sivde3 in 'tree' -1
eIminate_tree tbdrya([1).
e-iminate tree thbdry3(trce(j1,J3,L,l)-)

retract ,ucceed(trePj1,),,_j,
orde r'I (7,7, 11,J).)..
retr,." _succeedtbr,,1,3,,)

elimi nate..xetbdry~i (L) ,
_lmnaetree tbdrys(R), C

I~~ ~ "find e::nct_opp_pt" subordinate predicates *4**~*

/4 0 ,- a P; ** *00 *4A*-* A0 A 00 Ahf. * *AkA A A AA A*A

updateoaPredee,(7,j, (JX,J,Y,c(C)-,x2,X1OPIj)
opposite edge (Q),Iupdatle olpedge7.(1,, fLY., LY,c.(CI,X2,Y210P!, ( a,Ya,iI,Xb,Yt.;QJ))

retract (oj'po 3teed-,clOE0)
updrtt 'e3o ((),X, LY, X2, Y2), IXa, Yn) ,0I0,OEl)-,
inusert tu'ppositc- edgn JOE])) ,

updatn~opped ?.(J,, (I.,J, (CJLX, Y21c, JCX, Y2 ~I , Xh,Yb I C) I,
upat~ pfeter )de (23 , X, V2 o) , 11 2 ), ~,b~F ,'

updat _ spec2(1,J, tLX,L,c(f)X,2orI)

1.if or is cnutsiter#7lnkwi.,e alasi qq r.ppy'ig: 01



update apr edge3((LX,LYvX2,Y2J, (Xa,Yaj, (Xa,Ya,II,Xb,YbIOE0j,
(Xa,Yallh(o),X2,X2.ilh(ccw),LX,L,ll,Xb,YbIOEJ1)
on ray (X2, Y2, LX, LY, Xa, Yz-) ,!1.

/* If OP is clockwise along opp edge: ~
update opp_ edge3((LX,LY,X2,X2J, (Xa,Xaj, (Xa,Xa,H,Xb,Yb,$OEO],

(Xa,Ya,11,L,2,L2,htcw),X2,Y2,hto),Xb,'AbIOEOI)
* on ray (X2, Y2, I.X, LY, Xb, Yb) , I.

P If OP is neither clockwise or ccw then it goes into HCA interior or it ~
/* goes toward goal into JICA exterior, so it says nothing about opp point 4

update opp_ edge3C[LX,LY,X2,Y21, [Xa,Xaj, [Xa,Ya,H,Xb,YbIOEOJ,
(Xa,Ya,II,Xk.,YbjOrOj) :- I.

/P If LX,LY is not on current opp edge segment, recurse to next segmen.L
update opp_ edge3CILX,LY,X2,X21, (Xa,YaJ, (Xb,Yb,JIIOEOJ, [Xb,Yb,IIIOElI)

noL(sanie((Xa,Yaj, (Xb,Ybj)),
update-opp_.edge3((LX,LX,X2,X2J,IXak,Ya],OE,,OEl), I.

/444444444 update opposite Iedge" subordinate predicates 4*A/

/* new opp pL finds a new (& correct) opposite point if one is3 4

I' preszent, or rtns orig .pp pt. It -it recurses thru whole list 4

IP with h(o) for each edge, i-ni-tial opp pt was good. If it
/* finds a label other than Ja~o), then it needs new opp poinit. *
new op p1 C, I, Is (o) , _,, (on, Xo'PIj )

opposite point (Xapp, Xopp), I.
sewoppt(, IXl,Yl,hjc),X2.Y2lIOl,r1

new opp pt(IXl,YlJ, [X2,X2IO0J,1'), !
niewopppt(_,(X,Yl,h(ccw),X2,X2,_,X3,Y3J,P)

opjtimal lpails ((Xl, XlI, Cccw),
ov bisection search i(X2, X2, x3, 3,Xci', Xcw),
optimal pathj(lXcwXcwIJjCcw),
calc-opppt(XIX1,xcw,cwCccwCcw,P), 1.

new arp pt(XO,YOJ, lX,Yl,hi(cw),X2,Y21_1,P~t
optimal path(C(X2, X2 13,Ccw),

4 oc bisection -search (X1,Yl,XO, XO, Xccw,Yccw),
optimal path ((XcewXccwlJ),C':cw)I
calc-opp-pt X2, X2,Xccw,Yccw,Ccw,CccwP), 1.

oe-bisecti ons-earci(X,Yl,X2,Y2,X,YI P-1 Bisect edge: compute OP
XiO is XI 4 (X2-XJ/2, /P from tridpt; ifE OP 3taLts'/
YiO is Yl t (Y2-Y)/2, /" along edge, thsis is the I/
round-to_- decpl(XiO,Xi), /* point we are looking for*/
round to 4decpll(XiO,Yi),
optimal _path'UXi, Yi'c(C) XYIOF I),
on line IX,X, X1, Xl, X2, 2), I.

oe-bisecti onsearc(X,YIX2,Y2,X,XJ :/4if OP does not 3tort on 4

XiO is XI 4 (X2-Xl)/2, /4 edge, 3earvIs between 4

YiO is Yl +- (YZ-XII/2, /-1 point 1 anld poinit I. 4

round to 4decpl(XiO,Xi),
round to 4dccpl (YiO,YiI,
not (withi tolerancee(Xi,Xi, XI, Xi)),
ve bisection searcs(Xl,Xl,Xi,Yi,X,Y), 1.

oe-bisection searchi(XI,YI,X2,Y2,X,Y) PIf no correct OP Is
Xi is XI -1 (X2-X)/2, Pfound, return rt I as
Yi i.- YI 4 (Y2-YI) /2, IAanswezr. Thin case
within tLnera-nce (Xi, Yi, X1, I), /A SHOULD HOT IIArrmI, so '
tell (minaino'iop3) , /01 Print a warnitmg.
write ('Iloed or' fUzr start-point 1,

wri1.P(WAPhlIlV: missing nptimal pail from opposite tg),I
wzrite V for predicate ''loebisoctions-earcht"'),nil, I.
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AA A AAAhAAAAA"output" subordinate predic&tes AA AAAAAA

write bdryz_to -file (hca-orm,11)
write bdrys to file (hco opii, I(([1,JI, 3, Lrt) IdrySeL I)

tell (1hcaopin) ,
wi~ite('bdry('),

write-bdrys-to-ffle(hca opri, IdrySet).

write iter to -screen :
retract(number of iter(l)),
Iplumil is I + 1,
assert (number of iter Clpluslfl,
tell (user),
write ('consistency check'J
write(T),al, !

write-heading :-
r.-gionvertice ( (X,YIRJ), goal point (Xg, Yg),
cons(jX,YVRJ, IX,Yj,Region),
tellI (h1ca OPn),

write('Legion('),write(P.egion)'.write(') .'),nl,

write to scren (X)
tell (user),
write (X) . nl, !

/AAAA .44 AAA AA A*Auti-lity predicates AAAAAAAA 4A

fASucceeds if line segmnents intersect, but do not share an endpoui -t. A-/

interior inteCsectioii((Xi,YI1 I£3,L'tl, (X2 ,Y2IBZJ,IA't2,IntPt,BltKt32trJ :
n7ot (sviie (Lrti, irt2)), /AIf inters at endpt, LzuiLn; it not./
noL(sarne(IXI,YlJ,(X2,Y2), fAand intersects soewehere, suceed*O/
not(same(IXI,Yl',L~t2)), /A Assumes 0l A B2 intexiect '
not(:iaaie((X2,Y2J,Lrtl1,, /A in at most one point. A
bdJryiterectA~'n(tX1,YI£31I, X2,Y2l02J,lntPt,Bltr,B2tr), i.

interior intsrsection(Ixl,YliolJ, fl, X2,Y2112,i,IntPt,tsltr,B2tr) . /0 Ft;1.jA/
bdryitersction([X,YII3l], IX2,Y2102i,ititrt,Dltr,B2tzc), Pb AhJ.YvsA/

/* Full bdrysA/

A'bdry-interacction' determines the intersection of tw'o boundaria ,
or fail* if there is no intersection. The boundaries are

*piecewise linear, and are represented as a list of points,
U ~ic, I x1, yl,x2,Y7, x3.-O. . Tolerance is aliowo-d.7

AOnce! an intersection is founrd, It in cached to speed, up future references '
bdry-initersection (01,132, (Xi2,Yi~J,BILtr2.02ti:2)

b'Iryintrectionil (appr., Dl, D32, 1 Xi, YiJ , ltrunc, D32trinc),
Xi2 is (floor(XIJOOAQ)/J0Q013),
Y12 is (floor(YiIOOOJ/lOQOO1,
replace inst coords(£3ltrunc, 1Xi2,Yi2I,Ultr2),
repilace loat coords (02trunic, (lV2, Y12J ,02t x2),
u4svertn-(bdryinterecii (1b], D2, (X12, Y12) , Oltr2, B2tr21) 1.



11 'bdry intersection exeeL' is like 'hclry intersection', except that
"no tolerance is allowed on intersection point being A.nterior to
"both bdrys, and bdry interSection3 are not cached. ~

bdryintersectionexact(BI],B2, (Xi2,YiZJ,Bltr2,B2tr2)
bdry intersectioni (exact, B1,B2, (Xi,Yi],Bltrunc,B2trunc),
X12 is (floortX!*10000I/100001,
Y12 is (fioor(Y~I*100001/10000),

replace ilast -coozdo (Bltrunc, 1Xi2, Yi2J, 13tr2),
replace --lasL coods(3Ztrunti, (Xi2,Yi2j,132tr2),

P Check If any- segment of bdry 1 matches the Ist segment of bdry 2. ~
b'Jryi31teraectioni CPtrc, (XIl,YllXl2,Yl2l01i, (X21,Y21,X22,Y22IB2), Xi, Yil,

Bltruanc,B2trunc) :
bdryintersectionlr2 ((rec, (XlI ,Yll,X12,Yl2l1131,
IX21,Y2i,'Y22,Y2:J, (XI,YiI,Bltrunic,B2trunc), 1.

IP Recursively check th1e nexct segm1~nt of boundary 2 with all of bdry 1. /
bdryitersectionl(Prec, IXll,Yl2,X12,Y12101J, (X?1,Y21,X22,Y221B2), IXI,Yil,

Dltiuic, p.21,-Yaltb2tLrusucl)
bdryinterecti~n1 (Prec, (Xll, Yll, X12,Yl2l11l1,
(X22. 122!B2J, (Xi~,BlcP~runc,B2trunc), 1.

P Recursively see if any seg of bdry I matches the lot segment of bdry 2. ~
bdry_inbteraectio2(appr, ,Xll,YlI,Xl2,Yl2!B1J,

line -inter:-eccio~i (Xll,Y!2I, M2,-YI2,X2lrY2l, X22, Y22, Xi,Y~J.,
between(Xi,Yl),Xx^),
betwe-ii (Y-'1YI -Y12), /* Check if pt i is between A/

between (iX '1 .71 : P endpoints, of both segments Al
between(YiY21,Y27I, 3. /* incluaively A

biIter7~lio2AapX2 XflX2,Y.2'[iYli11 IB~tu~)Btue

IXdrY intersection Z(n-p;4:, (X12 ,4KI2 1BlJ,
(X?1, Y21,X22,Y2ZJ * (Xi, i-4)Ltrunic, 2truncj, 1.

l ine nt,-?sec tiot (X4-I1 ii12,x 2,; X,21,X22,.E22, Xi, Xi),
e::acEt~jetweea Xi, XI 1, X 12),
exact -betweenIYiY!,Y.121, /* Chee k if pt i is between A

txar._b2tween(Xi,X23,Z2;, -P!~ en~rolnt-s of boths segments ~
!nact -bc~wen(3.Y2l,Y22), 1. it nclusively *

bdryili'.eL3ectio~i2 (ex.act, JXl2 ',Y12 1 il

replace lIaot-co Ld3((XIYiWJ, lX,Yj.-j!L1 Yi1L2j)
lx rqplacs-lost_coozd3 (L, lX,7i1, LZ.~

rea33L _t~i.Jor.7 (F,c 1,3 J , L - tnry(, ,I1,J 3,L'.

e ~stothd~ Wy ,fy xr

Greer (1, Jrx ~,J;~- .

adin Centw, Cy*r (X,.,,r,41, . 7' )'
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adjacent bdrys(l,37,K,I,J7,I,l,K)

adjacent edges(I,J) j is I + 1.
adjacent edges(1,1I) numlier of edges (11).

get initbdryl~orJIl (,J,B) initbdry((1,3J),R)
get,_initbclcyl~orjl(I,J,D) initbdry(L.7,II,B).

get-tbdrys(_) :
assert (bdry_,listfJ,
tbdry(_, _,(11,Jj,B,LPtB),
retract cut (bdrylist-(Lfl,
assert (bdry list (Ii I,JI, B, LItBJ ILl),
fail.

get tbdrys (A)- -retract (bdry list (A)), I

reset last pts 1' Insures that intersecting
tbdr(FlC1,(,JJBI-(LXIL~l), * bdrys have idenitical. last points '

tbdr!,iF2,C2, tK,lJ),B2, ILX2,LY21),
adjacentbdy ,,KLIl3,,l,

within tolerance (LXI, 1YJ ,LX2, l.Y2),
retract -cut(tbdry(F2,C2,1[K,LI,B2, (LX2,LY21)),
asserta(tbdry(F2,C2, ,,L),B2, tLXI,LY1J)),
fail, !

reset last pL3

edge ad jacent to bdry (I, 1,3).
edge ad jacent to-bdry (3,I,J)-.

bdrystarts-atedge(,J,0) Diff is 1-3, abs(Diff,l), 1.
bdry_starts-at-edge(X,3,IJ Diff is I-J, abs(Diff,l), I
bdry starts at edge (1,I1,1) nwrjaer of edges(Ill),
bdry_starts-atede(l,I,II) number of edges(I), !
bdry_startsat edge(l,l,l) number of edqes3(N),!-
bdry starts-at-edge(1,l,12) number of edges(tU, f.

/I Opp Pt is located proportional to OP costs at each end *
calc-opppt(XlYlX2,Y2,Cl,C2, IXopp,Yoppj)

distance (Xl, Yl,X2, Y2,D12),
DelX is X2 - Xl, DelY is Y2 - Yl,
XoppO is XI 4 ((D124C2-Cl)/Dl2)*(De)X/2),
Ypo is Y, + ((D124C2-Cl)/Dl2)*(De1Y/2),
round to_4decpl(XoppD,Xopp),
raund to 4decpl CYoppO, Yopp), I.

PRounids off a nsumber to four decimal places (to allow uniLication A

/I with manually input optimal paths) */
round-to_4decpl(X,Xr) :-Xr is (floor((XIO.00005)*1OOOOI)/100OO
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A "bgutils" contains supporting predicates used by the "bg" files.

A Consulted and called by "bgf.

A Updated 12 Jan 89.
A

/* CONSVAIITS: Dimensions of input map A/

minX(0).
max. (80).
ininY (0).
maxy (100).

jl (3. 14159) .

/* "precision" is the ma:: number of line segments to compute '/

/- for each Ivis boundary, and twice the number for 2vis boundaries.
precision (20) .

tolerance(0.05). /* Pts cleser than this are usually not distinguished
P tolerance(0.015). 0/

/A****"************ general utility predicates *AAAAAA*AAAAAAAA/

between(B,A,C)
tolerance (T),
13plus is B I T,
Cplus is C + T,
A < Bplu3,
0 -< Cplus, I.

betweentD,A,C) :-
tolerance (T),
Lmiinus is B - T,
Cminus is C - T,
A >- Dminua,
B >- Cmninus, 1.

e;'actbetween(D,A,C)
A -< 0,
B -< C, .

exact between(B,A,C)
A >0 B,
B) C, !.

stricLly between(B,A,C) :-
A < R,

strictly_between (B, A, C)

B> C, 1.

g-t_counLer andii f efr-nmht (CLr -
r t.act (ctr-(Ctr)) ,
4pluunl is Ctr ,I 1,
nj s,'rt (rt r (-7pul~I)) , I.
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ordered(i,J,J1) -I

abs(X1,X) X >- 0.
abs(X,Y) X -< 0, Y is -X.

ret.ract succeed(r) retract('), t /4Always succeeds, fails on backtrack/
retract succeed( ) I.

retract cul.(P) :-retract(P),!. /ARetracts P, fails on backtracking 4

'unifyct. () :-cat 1(V), . /11 Got nt- inntice of r, fnil., oti I'nrkt.racking '

/A fails the first time called, then succeeds, toggling thereafter #/
tail succeed not(failed), .33sert(failed), 1, fail, !
tail succeed failed, retract(failed), I

get_last_pt(IXlast,YlastJ,Xlast,Ylest).
get last pt(IX,YIRestJ,Xlast,Ylast) :

get last pt tRestXlastYlast).

get_last_list(ILastJ,Last)_.
get_last_list((FIRestl,Last)

get-last-lit(Rest1.astJ.

within tolerance(Xl,Yl,X2,Y2)
tolerance (Tolerance),

DeIX !.. Toleran,
VelX < -Tolerance,
Del i> -Tleran,
DelY in Tolera,

IjelY > -Tolerance, 1.

same set (Setl,Set2) :
.vame(SeLl,Set2), I.

samteL.((A1Srtlj,Set2)- :
match -and de.Lte (A, Set.2, Set2LeosA),
same set (Sct 1, 3e2LcsJ'.), ~

match and -deiete (A. (AJ, ().
match _and_delete U., IAIRestJ,Rest).
match_ and delete_(A, IDISetl, (0I~et.I~eostJ)

match and delete (A, Set, SetLessh)_

P input: starting ind ending integers */
/* outpift: list of lists of the form 1((, 2), (2,31, . ., 1-,1,1131*
/0 where an itidex pair at-pears the nwn of times its initbdry appears A/
inden laI;t_ ltoJ(J,.1,((J,ljj) :- I.
index lint Itoj(I,3,Lll,Zpluslj (Rest)) :

Iplusi is 1 4 1,

/Z returnai the number of inithdry((l,jj,_)'a asserted ~
numbeIl 0)( I IIihiY., (1, .1, 1) .

aszqert. (temp num(il

retraect cut (temnp_pn(K)) ,
11.-ual is 11!1,

farsl, (tm*. mKpul
f.abrall !. ntdrn(3I

number of J u-1 in tn'r ul (2)
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/0 input: list of 3-elerient bdry list., of form U(1l,2j,B1,PtlJr ...JI I/

/* output: lis~t of lists of the form t,21,3..Jwhere each A

bdry in input list is represented by its index list *

index ]ist(H,M ; 1.

index list (Rest, RevList), 1.

Pinput: flum of edges and list o-- indicesv of each bdry previously asserted A

Poutput: list of indices of each bdry not previously asserted *1

complement index list (kI,[[l,2JIInListj,OutLlst) :- /* If [1,2J is first A/

complement inidex liat1(2,tI,1snList, (J,Outl~ist), 1.

complemfentindexclist(3,TnList,OutList) / If 11,21 is not first A

complement index list! (2,4, Intist, ((1,211,Outbist), 1.
P 12C 11,23 is firvi; ORl last., do nvL' incJu~fc it In complemednt list ~
/I if 11,21 is neither firzlt MIR l103t, iniclude it */
complement -index-- list! (1I, I,( 1s, I (file 1) Irirstj ) :-1
co.mplement -index -listi (18, i, I ft, 1, First, First) :- .
complement index_1- intlt,ZJ, (jt,211,First,II~lIljI) - .

compement index -lintI (11,lZ, (111,l), 11,21 ),First,[()): I
coniplemit indcex -listli (,1, (I , 0)1 IRest), First, RevlIndexList)

Iplusi is I + 1,
co'mplement index -listl(Tplusl,tI,Rest,First,RevlndexList), 1.

complemenit Index Xieti (1,fl,UJ,XJjfestJ,First, ((bIpitusliRevIndexiistj)

not faamp(I ? ))
roniplement index -list! (iplusi, ,([J, Ki Resti, First,Revlndexbist), 1.

set subt-rac~tion (LI, (A11.7.J, L4)
delete from Uist (A, L1,1,3),
zet Surkraction(1,3,1,2,L4), I

delete -from 31ntih,11,41J) :-.!
delete iromr -list (A, (AI6I,L2) :

delete frow list (A, L, 1.), 2.
delete rrnm list 1A, n -I'I 1")-IL21)

delete froas list(A,1.,LZ), I.

predicates relate,-'. to rotation and translation oi the boundary.

compute angle of rcation (Xo,Yo,X,Y, Angle) :- /A Computes angle to rot.*i
DI~eX is X-Xo, 10 the x-axJ1s to the A

uISCI >- 0, PA vector (Xo,Yo)->(X,Y) '
LVclY is Y-Yo, P when the anigle is a

Atigle is -asini(DelY/sqrt(VelX^2iDe1Y 21)) P between -pi/2 & piI2, 'V

compute ang le of rotation (Xe, Yo, X, Y, Angle) : -
Deiy is Y-yo, /... .wl-en Lte anale is *
L"'1Y >- G, /* between pi/2 & pi. *
DeiX is X-Xo,

Anigle is -Piiaoii,(IolY/sqrt(DelX^^2iDelY^2)).
compute -anale of rotation (Xe, Yo, 4 Y, Atule1 :-

uiy To i~ -yo, P... .wiln (.It^ anale in '
DVely 0;1, /Abntweli1i .3~/. '
D'IX is X-Xo,
pi CIi3,
Angle i o ri 1as En (VaY/irij (DlX^2 I De17^2))

invert hdry : - ,* Peflerts the 1--indory ,

ratracL (W~'ry (111) , Pabout Lte verticol line1



invert bdry(R,Vx,R-_mv), P~ X-Vx, where Vx is the *
assert(bdry(R mnv)), P/ bdzy vertex or last pair*/

invtert-bdry(X,YI,X,jX,YJ). PA of coords in bdry list A

invtrtbdry(LX,YIRJ,Xrefl,tXinv,Yibivi~invj)
inverc -bdry (t, Xrefl. Riiiv),
invert_coord3(X,Y,Xrefl,Xiziv,Yinv).

invert coords iX, Y,Xrefl, Xiiv, Y)
Xinv is 2'XLefI - X.

rotate b-dr y(Angle) :
retract (bdry (L)),
-rotat e -bdry (I., Atale, _,_, Lrot) ,
assert (bdry (Lrot)), !.

xotate-bdrytlX,YJ,Angle,X,Y,(X,YI)'. /* Assumes last item in A

/*list is bdry vertex ~
rolate bdIry(lX,YlJ,,Aniige,Xo,Yo,(Xrot,YrottLrotj)

rotate bdry CL, Angle, Xo, Ye,Lrs)t),
transalate point (X,Y, Xe, Vo,Xtr, YLr),
rotate poit (Xtr,Ytr,Anqle,Xrotl,Yrot1),

roaere -translate_ point (Xrotl,Yrotl,Xo,Yo,Xrot,Yrot).
oat_poI~t (XY,.'ngleXrotYrot) :

Xrot is X*cos(Anle) + YVsin(Angle),
Yrot is Ycos(Angle) --X*sin(Angle;.

rotate2-bdry(Angle) :
retract (bdry (L))
rotate2 bdry CL, Angle,,,Lrot),
assert (bdry (Lrot)), I.

rotate2-bdr(,YJ,Angle,X,Y,11). /* Assumes last item in 0/
/Plist is origin of rotation, but not on boundary A

rotate2 blzy((X,X IL),Angle,-Xo,Yo,-IXot,YrotlLrotI)
zcotate2 bdry(L,Ai~g~e,Xo,Yo,LxoL),
trnnlatEe point (C, Y, Xo, Yo, Xtr, Ytr),
rotate point (Xtr, Xtr, Anqie, Xrotl, Yrotl),
re-translatc poit(Xrotl,Yrotl,Xo,Yo,Xrot,Yrot).

translate point (X,Y.,Xo,io,Xtr,ltr)
Xtr is X-Xc,
YLr is Y-Yo.

re translate point (Xtr,YtrXo,Yo,X,Y)
X is Xtr'IXo,
Y is Ytr-*Yo.

M*ci~lluneous utiiity predicates.

debug loistrilenami)-
tell (Filename),

listing tbkdry) , iliig Ulnitbdry) , listing (tree).

reverseJI t(fj, (J).
reve2rse_liist-(XlJ,Revi~conX)

reverse list (I., ftevi),
ConI 5(Ie;L, YjI , ri-jLi~unXj

re ve rsesem-I i v (XfY I jX, Y)
revirc.sedqfe_li.t (X, Y, 1LIUJ, Revi.conoX)

zvcrse -edge Lot (L, ReW,
cons (IRev.L, (1t, X, Y) , rtevLconsX)
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reverse path list ((X,YJ, jX,YJ)) -
reverse path ~list(IXl,Yl,X2,Y21, (X2,Y2,Xl,Y13) : 1.
reverse path -list([X,YCl,X2,Y2,X3,Y3J, (X3,Y3,X2,Y2,Xl,Ylj) t
reverse path listtXl,Yl,X2,Y2,X3,Y3,X4,Y41,1X4,Y4,X3,Y3,X2,Y2,Xl,YlI) 1.
reverse path list.([Xl, Yl,X2, !2,X.3,Y3, X4,Y4, X5, YS),

1Xc5,Yi5,X4,Y4,X3,Y3,-X2,Y2,X1,Ylj) :- .
reverse path ~list (IX1,Yl,X2,Y2,X3,Y3,X4,Y4,XS,YS,X6,Y6J,

LX6,Y6,X5,Y5,,X4,Y4,X3,Y3,X2,Y2,Xl,YlJ) :-t.
reverse _path_list(IXl,Yl,X2,Y2,X3,Y3,X4,Y4,XS,YS,X6,Y,X7,Y71,

(X7,Y7,-X6,Y6,X5,Y,X4,Y4,X3,Y3,X2,Y2,X,YlI))-1
reverse pnth_--list ((Xl, l, X2,-Y2, X3, Y3, X4, Y4, X5, 5, X6, Y6,X7, X7, XB,YB18,

1XB,Y8,X7,Y7,X6,Y6,XS,Y5,X4,Y4,X3,Y3,X2,Y2,Xl,YljI: !.
reverse pathl.ist ((X.l, Yl,X2, Y2, X3,Y'3, X4,-Y4, X5,Y'5, X6, Y6,X7, '7, X8,Y1, X9, Y9J,

1X9,Y9,X8,Yd,X7,Y7I,X6,Y6,X5,Y5,X4,Y4,X3,'13,X2,Y2,Xl,Ylj) :- .
reverseepath hst ((X,'1tLi,RevbconsXY)

reverse path list IL, Revi.),
cons (1evb, (X,.J,RevbconsXX), I

ft Return the point of intersection of two lines, fail If parallel,.*
/I Vote: next 4 rules are included to retain precision where possible. ~
/0 If lines sIhate a point, that point is the intersection: A/
line iiiersecti.n(X2,'1l,X2,12,Xl,1l,X4,y!4,Xl,Yl) 1.
line intersectioa (XlI, 1X2, Y2,X2, Y2gX4,Y'4, X2,Y'2) : .
line intesection(Xl,Y,X2,2,X3,Y3,Xl,.Y,X1,Y1) :

line intersection (Xl,-!1,X2,Y2, X3,Y'3, X2,V2,X2,Y'2) :
lineiie'tter~ectioi(XIl, lX2,-Y2, X3,Y'3, X4, '4, Xi; i)

not (X2--XI), -tHandle separately if ~
not(X4--X3), -4 one line-is vertical 0/
Ma is (Y2-Y1)/(X2-Xl), /* Slope of 13t line A/
Ba is Y1-Ma*X1, ft Y1-Intecept of 1st Line A/
111) is (Y4-'13)/(X4-X3), Pt Slope of 2nd-line */
Din Y3-Mb*X3, ft '1-intecept of 2nd line/

no~t (fMb-~mn) , 74 This happens if lines are panallel 4/
Xi is (133-81b) / (tMb-1a) ,
Yi is 14b*Xi 4 Bb, ! .

line-initersection (Xl,Xl, Xl,Y'2, X3,'3, X4,Y4, Xi, Xi)-
not(X4--X3), 1* Case where 1st line is vertical 4

141 is (Y4-Y3J/(X4-X3), /* Fails if both lines vertical 01/
Bb is Y3-1bX3,
Xi is Xl,
Y! is Hb4 Xi + 13b, ! .

line-intersection (X1,Y , X2,Y'2, X., Y3, X3,Y'4 ,Xi,Yi)
not (X2--XI), 1t Case where 2nd line is vertical 4

Ila Is (Y2-Yl)/(X2-Xl), I" Fails If both lines vertical 4

Da is Xl-la 4 Xl,
Xi 1.' X3,
XI is MAOXi + 13a,

linie intersectioni(Xl,Xl,X2,X2.X,Yl,X2,Y2,Xl,1l). /A If lines are identical 4

/1* return the 1st vertex -as intersection point.*/
line initerection(X,Y,X,Y2,1,3.Xl.4,X1,Yl . /4 Case .eheze lines are 0/

/* vertical & coincident: return 1st vertex of 1st line as mnt pt. */
line int~ernection(Xl,Yl,XI,Y2,X3,Y3,X3,Y4,Xi,Yi) :- /A Case where linns are 0/

!, Unil. /* both vertical, but not coinicidentt; fail. */
line intersection (XIl, 1,X2, X2,X3,Y'3, X4,,Y4, XIl, 1) /4Coincident lines '

not (X2--X1),
niot (X4"'.X3),
Ila is ('12-Yl)l(X2-X1), ft -Blope of 1st line 0/
Ba is Yl-Mja*Xl, /0 '-intacept of Ist line 4

fib is (Y4-'3)/(X4-X.3), /0 slope of 2nd line I/
11% n*- Y3-LMb*X3. /0 Y-intecept of 2nd line 0/

It-n-11),f/ Parallel 0/
13n-L', !. /6 Same y-intercepts 0/

/I If lines are coincidejnt, returis lot vertex 0o. -ltt line as int pt 0/



virtual-vertex(Xl,YI,X2,Y2,X3,Y3,X4,Y4,Xv,Yv) /* the virtual vertex is Ot
line intersection(Xl,YI,X2,Y2,X3,Y3,X4,Y4,Xv,Yv),I. /* the point of *I

P intersection of the lines. A/

distance(X1,Yl,X2,Yf2,D)
D is sqrt((X2-Xl) 2 + (Y2-Yl)^2).

/I Counts length of a list ~
list -length ((j,0).
list length (X IiRest), Tio1 lusl)

list leoiqth (Rest, I) ,
1[)ltsl is I + 1.

P* Computes length of path P ~
path ',encth([j,O).
path length ( [_., j ,0).
path -length((Xl,Yl,c(C),X2,Y21P1,D) /* If coat data is present, find 4

path -length(1X2,X21Pj,Dl), /* weighted cost of path;
distance (Xl ,-Yl,X2, Y2, 02),
D is D1 + C4 02, 1.

path length(Il,Yl,X2,Y2jP!,D) /* If cost data is not present, *
path length(1X2,Y2IPj,D1), P~ find Euclidean length of path ~
dista;nce(Xl,Yl,X2,Y2,D2),
D is Dl + D2, 1.

/P Computes length of edge P 4

edge_1enqth((j,0).
edqielength(I_,_j,0).
edge lengtht((Xl,Yl,V,X2,Y2IPI,D)

edge length(jX2,YZIPJ,Dl),
distance (Xl, Yl,X2,Y2, 02),
V is DI + D2, !

/Compistes the distance between pks 1 4; 2 alonq pAth P 4

PFirst travels down the path until pt 1 is found 6/
P* then constructs list btwn ptl & 2, then finds its length 4

pattt-distatce(Xl,Yl,X2,Y2, !Xl,YIIPI,D) :
path -distance2(Xl,Yl,X2,Y2, !Xl,YlIPJ,Pl2),
pathlength(Pl2,0), 1.

path distance(X1,Yl,X2,Y2, (X3,Y3,c(C) IiJ,0))
path distance (X,Yl,X2,Y2,P,D).

path -distance2 (Xl,Yl,Xl,Yl, , H).
path -distance2(XL,Yl,X2,Y2,(X2,Y2IP),1X2,Y21).
path -distance2(Xl,Yl,X2,Y2.IX3,Y3,c(C)Irj,(X3,Y3,cCC)IIntList))

path -distance2(Xl,Y1,X2,Y2,P,InitList), !.

same (A, A). /* succeeds if booth zrgs are the same, fails othel'Wise A

P* concat arg 2 (atom), onto end of arg 1 (list), return as arg 3 (list) 4
cons(rj,B,1D) :- .
cons((XIBl),B2,jXIB3))

cons(D1,B2,B3J, I.

P A robuist arccosine routine (in C-Prolog, ac'os(1) bombs) 01/
aracos(X,0) :

X >-0.99999, 1.
arccoa(X,A) :-A is acos(.), I

/0 Remove the last. liir of coords from the lot arg, return as 2w-1 arg 4

remove laut ptI,.2, YZI,-IX, YI)
remove~la~ .X L) 1Y, Y I 1evLj)

remove last pt (1-, fvL), 1.
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convert degr_to_rads (Angle in.Deg,A le inRad)
degr to radsfactor(F),
AngleinRad is F*Angle_inDeg, I.

convert_rads_to_dcgr(T2,T2De9) :-
rads-to degrfactor (F2),
T2Deg is F20T2, !.

degr to rds factor(F) :- F is 3.14159/100.
radsito"degr-factor(F) F is 180/3.14159.

/* Succeeds if Ist path includes 2nd path, fails otherwise. */
P Assumes both arguments are bound. A/

includes_patLh(F,E):- !.
includes path((XI,Y1,c(C) !PIJ,P2)

in:-ludes path(r,P2), !.

/P Succeeds if azg 1 is a member of 2nd arg (a list), else fails A/

member(X,IXIRJ) -.
member(Y, IX21R])

membe-r (X, R), !
P Succeeds if args I and 2 are members of 3rd arg (a list) 4/

P in order listed, else fails 4/

member(X,Y,IX,YjRI):- !.
memberfX,7,1X2,Y21Rj)

mr.tber {X,Y, R), .
/A Succeeds if args 1 thru 4 are members of 5th arg (a list) A/

/P in order listed, else fails */
memlerXI,YI,X2,Y2,(XI,YI,X2,Y21R1):- !.
membez(Xl,Y1,X2,Y2, [X3,Y3,X4,Y41R) :-

member(Xl,Yl,X2,Y2,-[X4,Y41R),

abs(A,A) A >- 0.
abo(A,-A)- A < 0.

V IOTE: For development -purpooes (until a pt-to-pt path planner is 4/

P included in the program) optimal paths from each terrain feature */
/P vertex must be included-in the mapdata file. Additionally, OP's A/

/P from each shortcutting point along the opposite edge-must be incl.
/* There are two ways to query an opti.ial path: */
/ 1. optimalpath(|X,Yj]J) wili get an OP from pt X,Y if such an OP '/
/A exists in the database.
/4 2. optimalpath(UX,YJP,C) with C unbound will get the OP from X,Y '/
/P and determine the cost of te path. 4/

P 3. optimal paLh(IX,YIPI) will get a- 'pseudo OP' from XY if one
/P exists and there is no 'optimal_path'; this is applicable to the '/
/A first pass only. 4/

P Computes the cost of an optimal path, given the path in the DB 4/

optimal path (L,D) :-
vat(D}, P If opt path with total cost is already 01
optimal path(L), /* asserted, use it (b-mapdata is consulted A/

otimalpath2 (b,0), I. P before bgutil.-, else compute it here. */
optimal pth2([X],Yl,c(C),X2,Y2,Dl) :- / If opt path has cost data, use 4/

distasice(XI,YI,X2,Y2,Ls), 0l is C'D, 1. /* -this rule as the base case.*/
optimal_lath2(i):I,Yl,c(C),X2,Y21eist),D) / If opt patli has cost data use */

optimalpathi2((%2,Y2lP.est],D2), /A this rule as the rec. case
dista;ce(X1,Y1,X2,Y2,Dl), Dia is C'Dl,
0 -In II2, I.

optimal path (C,) : -

pseudo optimal..ath (L) .

/0 suc''ektl if lot pt in- on lintr aegm.',1' between pt2 & pt3 incliosive 0/
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on line(X1,Yl,xl,Yl,x2,Y2) I
otiline(X2,Y2,XI,YI,X2,Y2) 1
on-line(xi,Yi,X1,Y,X2,Y2) P

between(Xi,XI,X2), between(Yi,Yl,Y2),
DelX is X2-Xl, DelY is Y2-Yl, not(between(De1X,O,O)),
Xj is (Xi-X2)*DeIY/DelX 4I Y2,
withineitoleratice (xi,Yi, Xi, Xj), I

on-line(XS,Yi,Xl,Yl,X2,Y2) :
between(Xi#Xl,X2), betw4een(Yi,Yl#Y2),
DeIX is X2-Xl, DelXi2 is X2-Xi,
within-tolerance (DelXi2, Xi, DeiX, i), 1.

edge visibility check((Xa,Ya,Xb,YbJ, IXg,YgJ, (Xa,Ya,vXb,YbJ)
croasrrodZ is (Xb-.,a) * (Yg- a) - (b-Ya) *(Xg-Xab-
CrossProdZ >- 0,-!. 1* True if AngleGAD is between 0 and pi,- 6/

/* which is true if AD in vi~sible froin G.*/
edge visibility-chieck(IXa,Xa,Xb,XbJ,(Xg,Yg, IXu,Ys,h,XbYbJ)
edge visibility chieck ( Xa,,Ya,Xb,YblRListRestl, (Xg,Ygj-,

(Xa,Ya,vlRevIsedRListRest)) :
CrossProdZ is (Xb-Xa-* (Yg-Ya) - (b-Ya) *(Xg-Xa)-,
CrossrrodZ >- 0, /* True if AngleGAS is between 0 and pi, 0'/

/* which is true if AB is visible from G.*/
edge Visibility..check ((Xb,YblRlbi-t~estJ, (Xg,Ygj ,RevisedRListRest),!.

edge visibility .chieck,-( Xa,Ya,Xb,YbIRList~estI, (fg,YgJ,
j~a,Ya, hlReviaedRListRestj) :
cdqe visibility .check((Xb),YblRListRestj, (Xg,YgJ,ReVisedRLitLest), I.

set-done_flag(Xbdry,Ybdry) P* Compute bdry until it is *
naxX(MaxX),minX(HinX), PI off the page by 1/2 the *
niaxY(HaxY) ,minY(MinY), /* width of the page, to *
Xbdry > HinX- (IIaxX-MinX) /2, /* account for rotation. A
Xbdry < Ma::X+',taxY-IIinX) /2,
Ybdry-> MinY- (MaxY-lMinY) /2,
Ybdry < HaxY4It14axY-I~ini) /2, 1

set donte £laq(Xbdry,Ybdry) /A if bdry is off -the output page, 61
assert(doune). P* set "done" ~

store_2vi3 -reults(TI,T2,Y,Y2,BDg,Vx,Vy)
Xg is Vx + D90ICos(a),
Xbaseline is Xa - Yls3in(Tl),
Xbdry is Xbaseline - Y2s3in(T2),
Ybdry is Vy + Y2Acos(T2),
set -done flojg Xbdry,Ybdry),
retract Cbdry-(Bl,13t)) ,
assert(bdry((Xbdry,YbdrylBbist)) ;,

SOutput predicates.

outputInItI.,brys
Ic 11(bdry out),
Iauintbe oi edges (11),

write t o -bdry file (inmber of edges, ii),

iiiitbdry ((11,-1121, ,

write Lo bd ryf file (bidry, P, ill, 112),

outputS nitbdrys.



output active bdrys
tel(bdry out) ,nl,
ac- ivebdr-y (111l, N12, B) ,
write -to-bd ry file (bdry, B, 111,1121,
fail.

output active hdrys.

*Output prolog facts to file "bdry out"

write to bdryfile(tit.e,Title)
;rite flag(nowrite), I

tell (Edry out) ,
write(Ititle(I'), write(Title), writo(f'').'), nl, 1.

write_to_bdry file(qoal, (X,YI)
write flag (tio-write), 1.

write -tobdryfile(goal,IX,YJ)
write flag (write),
te-l(bdxy out),
write ('goal C'),
write C X, YJI)
write (I).'), nIl.

wrfttetobdry file (number of edges,N1)
w;rite -flag(no write), !.

wrt-obr~ien~e~fegsi)
wr-ite flag (write),
tell (bdry out),
wriLe('nwnber-of-edgesC'),
write Mi) ,
write(').'), nI.

write to bdyfl~poiePit-XY-Xm,Ym,Xp,YpJ)
w;rite_flag(no-write),

write-to-bdryfile(oppo~ite poinl,(X,yxm,ym,xr,ypl)
wri te flao (write),

tell (bdry'out) ,
write (,oprosite poinL(. '),
writeCX), write(','), write(Y)-,
write') .'), ni,
write ('opposite-roint -minus ('),
write(Xm), write(','), write(Ym),
write(') .'), nX,
wri 4ce('oppo~iite _point plus (' )-,
writeCXp), wxite(','), vrite(Yp),
wr-ite(').'), nI.

wrtet brfilejregion,PE)
write flagfno writ#e), I.

write to b'Jry file(rcqlon,R)
write flag (write;.~
tell (b'ry ouL),
write(' region (' ),,wie(I.wieID. siii

wtritet, btry file (region ~elist,,P.)

writej .IwI-ry ile (reion clit,R)
;r!Ie *fI.aa (writo 7
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write-to_bdry file (bdry, I, i-, N2) -

write-flag(no-write), !.
write to bdry file (bdry, B, ill, H2)-

write flag (write),
tell (bdry -out),
write 'V bry(V'),
write ((tl, N2 1) , write (I,
write (B),
write(').'), til.

write -to -bdryfile(bdry,b)
write flag(no write), 1.

write -to -bdryfile(bdry,B)
write flag (writel,
tell (bdry out),
write ('bdry ('),
write (B),
write(').'), nI.

output graphics instructions in "figure' format to file "bdry fig"

output-to-fivjute file
tell (bdry fig),
write heading (bdry)-,
bdryflidryist),
write-to-fig file(bdry,tBdryList), 1.

writcftctofig file(title)
tell (bdry fig),
title (Text),
assett (Subtitle('),
subtitle (Tent2I,
aosertz(wIdth of title(l0)), /P Default width *
width of title (4),
lndentE is,- 4.25 - W/16,
write (drawtextj ,n],
write(Isideistwrite(' ')_,write(l0.3),write(' '),write(0),nI,
write (Text) , n1,
write (drawtext) ,nl,
write(Indent),write(' '),write(9.9),write(' '-)-,write(O),nl,
wrlte(Text.2),nl, '

write to fig file~title) I

write -heading (bdzy)--
tellI bdry fig),

write (linewi'Jth) , ril, write (0.01) ,nl.

write lieadiig(region)
tL'I I Oh.ry-flj),
write (litiestyle) ,si, wrihe (2), nI,
write (liiiewidtl,) ,nI, write (U.03), ri.

draw lie (Xl , I , X2, Y2),

wr ite toj r1i, ri I.e (1-Iry, .-

lwrite-to-fJo-filefinv~bry, jXl4-I ,X2, Y2IRestI) I
tell (b'ryfia) ,
eltaw line -jiv (XI., YI, X2, 71)-,
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w'rite -to fig file (invbdry, [X2,Y2IRestJ).
write-to-fig-file(invbdry,_).

write-tofiqile(gol,jx,Yj)
tell (bdry fig),
scale -coords (X, Y, X1,Yl),
write (liuiestyle) ,sil, write (1) ,ni,
write (circle) ,nl,
write(Xl),wrjte(' '),write(YI),write(' '),wxIte(O),n1,
write(O.04),nl, !.

write to fig file(inv _qo&l,(X,Yj)
t ell (bdry fig),
scale -coords nv (X,T, Xl, Ti),
write (lineftyle) , n, write (I), nI,
write (circle) ,nl,

write(O.04),nl, !.

write to fig- file (reqslon, IXl,YljItestJ)
t ell (bdry fig),
write to fiq file2 (region, IX ,TlIRestJ,Xend,Yend),
draw Tlitue(Xl,Y1,Xend,enid), !.

write-to_fig-_file2 (region, (X,YJX,Y).
Nrite to fig _file2 '.'.n(XIYIX2,21ngt,XJudxeflg

te.i (bdxy fig).
dra~w line (Xl,Y1,X2,Y2),
write to fig file2(region, 1X2,T2IRest-j,Xend,Yend), 1.write to fia fie(inv region, I,Yl,X2,Y2IRest)
tell (bdry- fig),
draw -lisie-nv (XI, i, X2, Y2),
write-tof_fI ie (mv -region, (X2,Y2j.testj), 1.

write tofifieivxio,)

scale coords(X,-Y,X1,Yl) P' Scales and translAtes 4mnaxX(Ha:X),maxY(MaxY)minX(inX),minYHi,tY) P coords to appropriateVXI is 1 + (6.5' (X-MinX)/(H4axX-HinX)-), P' output coord system 'YI Is 1 4 ( 9 *(Y-HinY)f(flaxY-HinY)), -!.scale coords tIvjx,Y,xI,T2) 1' / also reflerts -tbe 0/m*-1X (14axX) , maxY (IMaZY) , minX ("i nX) , m~nY (MinY) , /* coords about the 0/XI is 7.5 - (6 .5*IX-MiIIx)fhgtaxx-Hinx)), P' vertical line X-4.25 0/TI is I + (9' (Y-MiLnY) /(HaxY-MinY) ) , I

draw-line(XI,Yl,X2,Y2) :
scale coord(X,Y,Xlb,Ylb),
scale coorda (X2,Y2, X2b, Y2b),
write (polyline) , ad, write (2), aiX,
write(Xl),write(I 1),write(Ylb),write(I '),write(O),ntl,
write(XM) ,write (' '),write (Y2b)_,write (' '-) ,write (0), nI,draw-lieInv(Xl,Yl,X2,Y2)
scale courd3_mv (Xl, TI, XII), Ti!),
scale -coord3_iaav (X2, T2,X2b, Y2b),
write (polyline) ,n), write (2) ,ni,

write(Xb),write(' 'I,write(Ylh),wrmte( I ),write(fl,,I
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A "bgmd22"
A

File "bgmapdata" has terrain and goal data used by Obdrygen".

/A "region-vertices" lists the vertices of one HCA
" in clockwise order. rirst point listed cat be any
" of the vertices.

region vertices ( 14, 20, 30,70, 40,71, 60,30, 36, I).

title('Eample 22').

goal_point (35, 84).

/* cost" is the time required to travel one unit of distance.
A Iote that this is the inverse of the "cost" used in
" the "sls" code.
A/

interior cosgt(2).
exterior cost (1).

A "opt.msl_psth" is - temporary set of predicates which specify
A the optimal path list from each vertex in the map.

- Eventually, it will be replaced by a rule which computes
A the optimal path using a path-finding routine such as

'Ss" or "rrr".

oxtim-I.pth (14,20, c(1),30,70, c(1),35,84) .
optImal_|jth (130, 70, c(l) 35, 84) .
optIsaljath(136, 8,c(1) 60,30,c(I), 35, 84j) .
optimalrpath(160,30,c(1),35,841).
optimcl_path([40, 71,c(1), 35, 4)2.

282



REFERENCES

1. Lozano-Perez, T., and Wesley, M. A., "An Algorithm for Planning Collision-Free Paths
Among Polyhedral Obstacles", Communications of the ACM, Vol. 22, No. 10, 1979,
pp. 560-570.

2. Rowe, N. C., "Roads, Rivers, and Rocks: Optinal Two-Dimensional Route Planning
around Linear Features for a Mobile Agent", Technical Report NPS52-87-027, Naval
Postgraduate School, Monterey California, 1 987 (accepted to International Journal of
Robotics Research).

3. Mitchell, J. S. B., and Papadinitriou, C. H., "The Weighted Region Problem", Techni-
cal Report, Department of Operations Research, Stanford University, Stanford, Califor-
nia, 1986. To appear in Journal of the ACM.

4. Mitchell, J. S. B., "A New Algorithm for Shortest Paths Among Obstacles in the Plane",
School of Operations Research and Industrial Engineering, Cornell University, Ithaca,
New York, 1989, to appear in Journal of the ACM.

5. Ban', A., and Feigenbaum, E. A., The Handbook of Artificial Intelligence, pp. 19-72,

Addison-Wesley, Inc., 1986.

6. Rowe, N. C., Artificial Intelligence Through Prolog, Prentice-Hall, 1988.

7. Rich, E.. ArtificialIntelligence, McGraw-Hill, New York, 1983.

8. Preparata, F. P., and Shamos, M. I., Computational Geomety, An Introduction,
Springer-Verlag, 1988.

9. Wu, P. K., Computer Science Seminar, Naval Postgraduate School, Monterey Califor-
nia, April, 1989.

10. Lee, D. T., and Drysdale, R. L., "Generalization of Voronoi Diagrams in the Plane",
SIAM Journal of Computing, Vol 10, No. 1, pp. 73-87.

11. Chew, L. P., and Drysdale, R. L., "Voronoi Diagrams Based on Convex Distance Func-
tions", Department of Mathematics and Computer Science, Dartmouth College,
Hanover, Hew Hampshire, 1985.

12. Aurenhammer, F., and Edelsbrunner, H., "An Optimal Algorithm for Constructing the
• ~ ~ ~ ~ A ,n2t..x . . :r:. . . - 1 - 1 U-1_t V ,...D ,.., .';l17 Xt.., 'I -- 1C I

257, 1984.

13. Aronov, B., "On the Geodesic Vo;onoi Diagram of Point Sites in a Simple Polygon",
Proceedings of the ThirdAnnualACM Symposium on Computational Geometry. Water-
loo, Ontario, pp. 39-49. 1987.

283



14. Brooks, R. A., "Solving the Find-Path Problem by Good Representation of Free Space",
IEEE Transactions on Systems, Man and Cybernetics, Vol. 13, No. 3,1983, pp. 190-197.

15.Mitchell, J. S. B., "An Algorithmic Approach to Some Problems in Terrain Navigation",
Artificial Intelligence, Vol. 37, 1988, pp. 171-201.

16. Turnage, G. W., and Smith, J. L., "Adaptation and Condensation of the Army Mobility
Model for Cross-Country Mobility Mapping", Technical Report GL-83-12, Geotechni-
cal Laboratory, U. S. Army Engineer Waterways Expoeriment Station, Vicksburg, Mis-
sissippi, 1983.

17. Pearl, J. Heuristics, Intelligent Search Strategies for Computer Problem Solving, Ad-
dison-Wesley, Reading, 1984.

18. Kirkpatrick, S., Gelatt Jr., C.D., and Vecchi, M.P., "Optimization by Simulated Anneal-
ing", Science, Vol. 220, No. 4598, 13 May 1983, pp 671-680.

19. Mitchell, J. S. B., and Kiersey, D. M., "Planning Strategic Paths Through Variable Ter-
rain Data", SPIE Vol 485 Applications of Artificial Intelligence, 1984, pp. 172-179.

20. Richbourg, R. F., "Solving A Class of Spatial Reasoning Problems: Minimal-cost Path
Planning in the Cartesian Plane,: Ph.D. Dissertation, Naval Postgraduate School,
Monterey, California, 1987.

21. Richbourg, Robert F., "Path-Planning Algorithm Implementations", Technical Report
NPS52-87-022, Naval Postgraduate School, Monterey California, 1987.

22. Garey, M. R., and Johnson, D. S., Computers and Intractabiity, A Guide to the
Theory ofNP-Completeness, W. H. Freeman and Company, New York, New York,
1979, pp. 90-92.

23. Kiersey, D., Mitchell, J. S. B., Payton, D., and Preyss, E., "Path Planning for
Autonomous Vehicles", SPIE, Vol. 485, Applications of Artificial Intelligence, 1984.

24. Kirkpatrick, S., Gelatt Jr., C. D., and Vecchi, M. P., "Optimizatiop by Simulated An-
nealing", Science, Vol. 220, No. 4598, 1983, pp. 671-680.

25. Lindsay, C., "Automatic Planning of Safe and Efficient Robot Paths Using an Octree
Representation of a Configured Space",, IEEE International Conference on Robotics and
Automation, Raleigh, North Carolina, 1987.

26. Vossepoels, A.M., & Smeulders, S.W.M., "Vector Code Probability and Metrication
Error in the Representation of Straight Lines of Finite Length", Computer Graphics and
Image Processing, Vol. 20, pp.347-364, 1982.

284



27. Quek, F. K. H., Franklin, R. F., and Pont, F., "A Decision System forAutonomous Robot
Navigation Over Rough Terrain", Proceedings SPIE Applications of Artificial Intel-
ligence, boston, Massachusetts, 1985.

28. Guibas, L., and Hershberger, J., "Optimal Shortest Path Queries in a Simple Polygon",
Proceedings Third Annual ACM Conference on Computational Geometry, pp. 50-63,
Waterloo, Ontario, 1987.

29. Linden, T. A., Marsh, J. P., and Dove, D. L., "Architecture and Early Experience With
Planning for the ALV", Proceedings, IEEE International Conference on Robotics and
Automation, San Francisco, California, 1985, pp. 2035-2042.

30. Jorgenson, C., "Robot Navigation Using Neural Networks", Workshop on Advanced
Computer Architectures for Robotics and Machine Intelligence: Neural Networks and
Neurocomputers, IEEE International Conference on Robotics and Automation, Raleigh,
North Carolina, 1987.

31. Lee, D. T., "Proximity and Reachability in the Plane", Ph.D. Dissertation, Technical
Report ACT-12, Coordinated Science Library, University of Illinois, 1978.

32. Mitchell, J. S. B., "Planning Shortest Paths", Ph.D. Dissertation, Department of Opera-
tions Research, Stanford University, 1986.

33. Welzl, E., "Constructing the Visibility Graph for n Line Segments in O(n2 ) Time", In-
formation Processing Letters 20, Elsevier Science Publishers, B. V., (North-Holland),
1985.

34. Asano, Takao, Asano, Tetsuo, Guibas, L., Hershberger, J. and Imai, H., "Visibility-
Polygon Search and Euclidean Shortest Paths", Proceedings 26th Symposium on Foun-
dations of Computer Science, pp. 155-164, 1985.

35. Ghosh, S. K., and Mount, D. M., "An Output Sensitive Algorithm for Computing
Visibility Graphs", Technical Report CS-TR-1874, Department of Computer Science,
University of Maryland, 1987.

36. Aho, A. V., Hopcroft, J. E., and Ullman, J. D., Data Structures and Algorithms, Ad-
dison-Wesley, Inc., 1987.

37. Gewali, S., Meng, A., Mitchell, J. S. B., and Ntafos, S., "Path Planning in 0/1/oc Weigh
ted Regions With Applications", Extended Abstract in Proceedings of the Fourth An-
nual ACM Conference on Computational Geometry. Urbana-Champaign. Illinoispp.
266-278, 1988.

285



38. Richbourg, R. F., Rowe, N. C., Zyda, M. J., and McGhee, R., "Solving Global Two-
Dimensional Routing Problems Using Snell's Law and A* Search", Proceedings IEEE
International Conference on Robotics and Automation, pp. 1631-1636, Raleigh, North
Carolina, 1987.

39. Rowe, N. C., and Richbourg, R. F., "An Efficient Snell's-Law Method for Optimal-Path
Planning Across Multiple Two-Dimensional Irregular Homogeneous-Cost Regions",
Technical Report NPS52-88-017, Naval Postgraduate School, Monterey California,
1988.

40. Ross, R.. ..... , Ph.D. Dissertation, Naval Postgraduate School, Monterey, California,
1989.

41.Lee, D. T., and Preparata, F. P., "Euclidean Shortest Paths in the Presence of Rectilinear
Barriers", Networks Vol. 14, pp. 393-410, 1984.

42. Reif, J. H., and Storer, J. A., "Shortest Paths in the Plane with Polyhedral Obstacles",
Technical Report CS-85-121, Computer Science Department, Brandeis University, Wal-
tham, Massachusetts, 1985.

43.Payton, D. W., "Internalized Plans: A Representation for Action Resources", presented
at the Workshop on Representation and Learning in an Autonomous Agent, Faro, Por-
tugal, 1988.

•4.Wade, R., ... , M.S. Thesis, Naval Postgraduate School, Monterey, California, 1989.

45.Pountain, D., "Digital Paper", Byte, Vol. 14 No. 2, pp. 274-280, 1989.

46.Hillier, F. S., and Lieberman, G. J., Introduction to Operations Research, p. 271, Hol-
den-Day, Inc., 1980.

286



REFERENCES.

1. Lozano-Perez, T., and Wesley, M. A., "An Algorithm for Planning Collision-Free Paths
Among Polyhedral Obstacles", Conmunications of the ACM, Vol. 22, No. 10, 1979,
pp. 560-570.

2. Rowe, N. C., "Roads, Rivers, and Rocks: Optimal Two-Dimensional Route Planning
around Linear Features for a Mobile Agent", Technical Report NPS52-87-027, Naval
Postgraduate School, Monterey California, 1987 (accepted to International Journal of
Robotics Research).

3. Mitchell, J. S. B., and Papadimitriou, C. H., "The Weighted Region Problem", Techni-
cal Report, Department of Operations Research, Stanford University, Stanford, Califor-
nia, 1986. To appear in Journal of the ACM.

4. Mitchell, J. S. B., "A New Algorithm for Shortest Paths Among Obstacles in the Plane",
School of Operations Research and Industrial Engineering, Cornell University, Ithaca,
New York, 1989, to appear in Journal of the ACM.

5. Barr, A., and Feigenbaum, E. A., The Handbook of Artificial Intelligence, pp. 19-72,
Addison-Wesley, Inc., 1986.

6. Rowe, N. C., Artificial Intelligence Through Prolog, Prentice-Hall, 1988.

7. Rich, E., Artificial Intelligence, McGraw-Hill, New York, 1983.

8. Preparata, F. P., and Shamos, M. I., Computational Geomeny, An Introduction,
Springer-Verlag, 1988.

9. Wu, P. K., Computer Science Seminar, Naval Postgraduate School, Monterey Califor-
nia, April, 1989.

10. Lee, D. T., and Drysdale, R. L., "Generalization of Voronoi Diagrams in the Plane",
SIAM Journal of Comnputing, Vol 10, No. 1, pp. 73-87.

11. Chew, L. P., and Drysdale, R. L., "Voronoi Diagrams Based on Convex Distance Func-
tions", Department of Mathematics and Computer Science, Dartmouth College,
Hanover, Hew Hampshire, 1985.

12. Aurenhanuner, F., and Edelsbrunner. H., "An Optimal Algorithm for Constructing the
Was~.;htp4A Vnrnnnf c,.,raurn n thp Plturi" Pantor,, Rononitin Vnt -17- Net !). 217 -

257, 1984.

13. Aronov, B., "On the Geodesic Voronoi Diagram of Point Sites in a Simple Polygon",
Proceedings of the Third Annual ACM Symposium on Computational Geomnery, Water-
loo, Ontario, pp. 39-49, 1987.

283



14. Brooks, R. A., "Solving the Find-Path Problem by Good Representation of Free Space",
IEEE Transactions on Systems, Man and Cybernetics, Vol. 13, No. 3, 1983, pp. 190-
197.

15. Mitchell, J. S. B., "An Algorithmic Approach to Some Problems in Terrain Navigation",
Artificial Intelligence, Vol. 37, 1988, pp. 171-201.

16. Tumage, G. W., and Smith, J. L., "Adaptation and Condensation of the Army Mobility
Model for Cross-Country Mobility Mapping", Technical Report GL-83-12, Geotechni-
cal Laboratory, U. S. Army Engineer Waterways Expoeriment Station, Vicksburg, Mis-
sissippi, 1983.

17. Pearl, J. Heuristics, Intelligent Search Strategies;wOr Computer Problem Solving, Ad-
dison-Wesley, Reading, 1984.

18. Kirkpatrick, S., Gelatt Jr., C.D., and Vecchi, M.P., "Optimization by Simulated Anneal-
ing", Science, Vol. 220, No. 4598, 13 May 1983, pp. 67'-680.

19. Mitchell, J. S. B., and Kiersey, D. M., "Planning StrategicPaths Through Variable Ter-
rain Data", SPIE Vol 485 Applications of Artificial Intelligence, 1984, pp. 172-179.

20. Richbourg, R. F., "Solving A Class of Spatial Reasoning Problems: Mininal-cost Path
Planning in the Cartesian Plane,: Ph.D. Dissertation, Naval Postgraduate School,
Monterey, California, 1987.

21. Richbourg, Robert F., "Path-Planning Algorithm Implementations". Technical Report
NPS52-87-022, Naval Postgraduate School, Monterey California, 1987.

22. Garey, M. R., and Johnson, D. S., Computers and Itractabilin,, A Guide to the Theor!y
ofNP-Completeness, W. H. Freeman and Conipany,'New York,-New York, 1979, pp.
90-92.

23. Kiersey, D., Mitchell, J. S. B., Payton, D., and Preyss, E., "Path Planning for
Autorornous Vehicles", SPIE, Vol. 485, Applications of Artificial Inteligence, 9%,4.

24. Kirkpatrick, S., Gelatt Jr., C. D., and Vecchi, M. P., "Optinization by Sinmulated Ani-
nealing", Science, Vol. 220, No. 4598, 1983, pp. 671-680.

25. Lindsay, C., "Automatic Planning of Safe and Efficient Robot Paths Using an Octree
Representation of a Configured Space",, IEEE hitemational Conferenceon Robotics
and Automation, Raleigh, North Carolina, 1987.

26. Vossepoels, A.M., & Srneulders, -S.W.M., "Vector Code Probability -and Metrication
EiTor in the Representation of Straight Lines of Finite length", Compuer-Graphicsawd
Image Processing, VoL 20, pp. 347-364, 1982.

284

_ A



27. Quek, F. K. H., Franklin, R. F., and Pont, F., "A Decision System for Autonomous Robot
Navigation Over Rough Terrain", Proceedings SPIE Applications of Artificial Intel-
ligence, boston, Massachusetts, 1985.

28. Guibas, L., and H ershberger, 1. "Optimal Shortest Path Queries in a Simple Polygon",
Proceedings Third Annual ACM Confei ence on Computational Geometry, pp. 50-63,
Waterloo, Ontario, 1987.

29. Linden, T. A., Marsh, J. P., an d Dove, D. L., "Architecture and Early Experience With
Planning for the ALV", Proceedings, IEEE International Conference off Robotics and
Automation, San Francisco, California, 1985, pp. 2035-2042.

30. Jorgenson, C., "Robot Navigation Using Neural Networks", Workshop on Advanced
Computer Architectures for Robotics and Machine Intelligence: Neural Networks and
Neurocomputers, IEEElnternational Conference on Robotics and Automation, Raleigh,
North Carolina, 1987.

31. Lee, D. T., "Proximity and Reachability in the Plane", Ph.D. Dissertation, Technical
Report ACT-12, Coordinated Science Library, University of Illinois, 1978.

32. Mitchell, J. S. B., "Planning Shortest Paths", Ph.D. Dissertation, Department of Opera-
tions Research, Stanford University, 1986.

33. Welzi, E., "Constructing the Visibility Graph forn Line Segments in O(n 2) Time", In-
formation Processing Letters 20, Elsevier Science Publishers, B. V., (North-Holland),
1985.

34. Asano, Takao, Asano, Tetsuo, Guibas, L., Hershberger, J. and Imai, H., "Visibility-
Polygon Search and Euclidean Shortest Paths", Proceedings 26th Symposium on Founl-
dations of Computer Science, pp. 155-164, 1985.

35. Ghosh, S. K., and Mount, D. M., "An Output Sensitive Algorithm for Computing
Visibility Graphs", Technical Report CS-TR-1874, Department of Computer Science,
University of Maryland, 1987.

36. Aho, A. V., Hopcroft, J. E., and Ulinan, J. D., Data Structures anid Algorithms, Ad-
dison-Wesley, Inc., 1987.

37. Gewali, S., Meng, A., Mitchell, J. S. B., and Ntafos, S., "Path Planning in 0/1/o Weigh
ted Regions With Applications", Extended Abstract in Proceedings of the Fourth An-
nual ACM Conference on Computational Geomnetry, Urbana-Champaign, Illinois, pp.
266-278, 1988.

285



38. Richbourg, R. F., Rowe, N. C., Zyda. M. J., and McGhee, R., "Solving- Global Two-
Dimensional Routing Problems Using Snell's Law and A* Search", Proceedings IEEE
International Conference on Robotics and Automation, pp. 1631-1636, Raleigh, North
Carolina, 1987.

39. Rowe, N. C., and Richbourg, R. F., "An Efficient Snell's-Law Method for Optimal.Path
Planning Across Multiple Two-Dimensional Irregular Homogeneous-Cost Regions",
Technical Report NPSi2-88-017, Naval Postgraduate School, Monterey California,
1988 (accepted to International Journal of Robotics Research).

40. Ross, R., "Planning Minimum-Energy Paths in an Off-Road Environment with
Anisotropic Traversal Costs and Motion Constraints", Ph.D. Dissertation, Naval
Postgraduate School, Monterey, California 1989.

41. Lee, D. T., and Preparata, F. P., "Euclidean Shortest Paths in the Presence of Rectilinear
Barriers", Networks Vol. 14, pp. 393-410, 1984.

42. Reif, J. H., and Storer, J. A., "Shortest Paths in the Plane with Polyhedral Obstacles",
Technical Report C3-85-121, Computer Science Department, Brandeis University,
Waltham, Massachusetts, 1985.

43. Payton. D. W., "Internalized Plans: A Representation for Action Resources", presented
at the Workshop on Representation and Learning in an Autonomous Agent, Faro, Por-
tugal, 1988.

44. Wade, R., M.S. Thesis, Naval Postgraduate School, Monterey, California, 1989.

45. Pountain, D., "Digital Paper", Byte, Vol. 14 No. 2, pp. 274-280, 1989.

46. Hillier, F. S., and Lieberman, G. J., Introduction to Operations Research, p. 271, Hol-
den-Day, Inc., 1980.

286



DISTRIBUTION LIST

Defense Technical Information Center

Cameron Station
Alexandria, VA 22314 2

Library, Code 0142

Naval Postgraduate School

Monterey, CA 93943 2

Dr. Neil C. Rowe, Code 52Rp

Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943 10

Dr. Maurice D. Weir, Code 53Wc

Department of Mathematics

Naval Postgraduate School

Monterey, CA 93943 2

Dr. C. Thomas Wu. Code 52Wq

Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943 2

Dr. Yuh-Jeng Lee, Code 52Le

Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943 2

Dr. Donald R. Barr
Valuation Technology, Inc.

6800 Garden Road

Monterey, CA 93940 2

Dr. Robert B. McGhee, Code 52Mz

Departunent of Computer Science

Naval Postgraduate School
Mo,! y,.CA.93940 2

287



Dr. Man..Tak Shing, Code 52Sh
Department of Computer Science
Naval Postgraduate School

Monterey. CA 939432

Major Robert S. Alexander
2904 So. 14th Stmeet

Leavenworth, KS 66044 15

288


